Macro f-score analysis
General sentiment features (MPQA)
Feature Count |
Mutual Information |
Chi-squared |
100 |
0.59303 |
0.57154 |
500 |
0.54834 |
0.65155 |
1000 |
0.55208 |
0.64063 |
2000 |
0.54880 |
0.64961 |
3000 |
0.54212 |
0.66472 |
5000 |
0.53115 |
0.65877 |
10000 |
0.64392 |
0.66429 |
12000 |
0.64031 |
0.65162 |
15000 |
0.63760 |
0.63893 |
CoreNLP Sentiment features
Feature Count |
Mutual Information |
Chi-squared |
100 |
0.60311 |
0.60323 |
500 |
0.62327 |
0.64561 |
1000 |
0.63108 |
0.66942 |
2000 |
0.66101 |
0.65051 |
3000 |
0.65690 |
0.66053 |
5000 |
0.66525 |
0.67660 |
10000 |
0.66053 |
0.65723 |
12000 |
0.66185 |
0.66431 |
15000 |
0.67069 |
0.66263 |
Feature Count |
Mutual Information |
Chi-squared |
100 |
0.61387 |
0.58628 |
500 |
0.62576 |
0.64608 |
1000 |
0.63073 |
0.66455 |
2000 |
0.63968 |
0.67255 |
3000 |
0.65115 |
0.67281 |
5000 |
0.64418 |
0.67874 |
10000 |
0.64069 |
0.65582 |
12000 |
0.63854 |
0.66880 |
15000 |
0.63505 |
0.63764 |
Bow alone
Feature Count |
Mutual Information |
Chi-squared |
100 |
0.56596 |
0.57807 |
500 |
0.56778 |
0.56950 |
1000 |
0.64222 |
0.64496 |
2000 |
0.63910 |
0.64584 |
3000 |
0.64164 |
0.63732 |
5000 |
0.64843 |
0.65658 |
10000 |
0.62372 |
0.65714 |
12000 |
0.61729 |
0.62755 |
15000 |
0.61443 |
0.61324 |
No Comments