New Page

Early stuff I was doing was seeing the first epochs perform the best and high sensitivity to number of rnn layers (less was performing better) this ended up being because the gradients were exploding.

To solve this, I specified --max-norm 1 which forces gradient clipping.

Ended up getting 66 CER after 10 epochs.

Trying again with 100 epochs and data augmentation (pitch peturbation and gain modulation).

 python train.py --train-manifest data/train_combined.csv --val-manifest data/_home_data_corpora_speech_IARPA-babel305b-v1.0c-build_converted_BABEL_OP3_305_conversational_dev__manifest.csv --model-path models/100epoch2.pth --max-norm 1 --epochs 100 --opt-level O0 --cuda --augment --labels-path data/BABEL/guarani_labels.json --tensorboard
 python train.py --train-manifest data/train_combined.csv --val-manifest data/_home_data_corpora_speech_IARPA-babel305b-v1.0c-build_converted_BABEL_OP3_305_conversational_dev__manifest.csv --model-path models/100epoch2.pth --max-norm 50 --epochs 100 --opt-level O0 --cuda --augment --labels-path data/BABEL/guarani_labels.json --tensorboard --augment

1 gru successful

python train.py --train-manifest data/train_combined.csv --val-manifest data/_home_data_corpora_speech_IARPA-babel305b-v1.0c-build_converted_BABEL_OP3_305_conversational_dev__manifest.csv --model-path models/1_hi_aug.pth --max-norm 100 --hidden-layers 1 --epochs 20 --opt-level O0 --cuda --labels-path data/BABEL/guarani_labels.json --loss-scale 1 --tensorboard --id 1_hid_max_norm_100

result: WER 88.366 CER 43.116

still achieving better performance after 20 epochs, so I should rerun with more epochs

2 gru

python train.py --train-manifest data/train_combined.csv --val-manifest data/_home_data_corpora_speech_IARPA-babel305b-v1.0c-build_converted_BABEL_OP3_305_conversational_dev__manifest.csv --model-path models/2_hi_aug.pth --max-norm 100 --hidden-layers 2 --epochs 40 --opt-level O0 --cuda --labels-path data/BABEL/guarani_labels.json --loss-scale 1 --tensorboard --id 2_hid_max_norm_100

results with max norm = 100

Average WER = 74.590 Average CER = 29.756

Going to try again with higher max norm (default 400) and see how that goes. Before the gradients were exploding when I did that.

3 gru

max norm = 100, after 40 epochs: WER = 60.519 CER = 21.876

4 gru

max norm = 100, after 40 epochs: WER = 52.413 CER = 17.833

5 gru

(ran on qivalluk). 40 epochs, Average WER 14.239 Average CER 3.655. Used nearly all default arguments.