Crow res
After setting alpha and beta parameters for language model to 0 (effectively negating the language model)
--lm_weight .1 \
--lm_alpha 0\
--drop_source_layers 1 \
--source_model_checkpoint_dir "${SOURCE_MODEL}/deepspeech-0.5.1-checkpoint/" \
--n_hidden 2048 \
--epoch -10 \
--earlystop_nsteps 5 \
--train_batch_size 30\
--dev_batch_size 48 \
--test_batch_size 48 \
--learning_rate 0.001 \
--dropout_rate 0.2 \
Test on /home/kenneth/Projects/JSALT_NPLM_data/Speech/Deep_Speech/cro/clips/test.csv - WER: 0.990699, CER: 0.871154, loss: 27.086073
Examples:
--------------------------------------------------------------------------------
WER: 2.000000, CER: 0.800000, loss: 10.316745
- src: "grgacgicr "
- res: "r r"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.666667, loss: 1.255609
- src: "grg"
- res: "r"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.400000, loss: 1.491453
- src: "bggrp"
- res: "bgg"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 1.747670
- src: "cg"
- res: ""
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 2.060837
- src: "gahg"
- res: ""
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 2.078961
- src: "cg"
- res: ""
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.500000, loss: 2.292280
- src: "gg"
- res: "bgg"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 2.531346
- src: "cg"
- res: "r"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 2.713193
- src: "ccg"
- res: ""
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 2.719913
- src: "gg"
- res: ""
--------------------------------------------------------------------------------
--lm_weight .1 \
--lm_alpha 0\
--drop_source_layers 1 \
--source_model_checkpoint_dir "${SOURCE_MODEL}/deepspeech-0.5.1-checkpoint/" \
--n_hidden 2048 \
--epoch -10 \
--earlystop_nsteps 5 \
--train_batch_size 30\
--dev_batch_size 48 \
--test_batch_size 48 \
--learning_rate 0.0001 \
--dropout_rate 0.2 \
Test on /home/kenneth/Projects/JSALT_NPLM_data/Speech/Deep_Speech/cro/clips/test.csv - WER: 0.989741, CER: 0.857567, loss: 25.778952
--------------------------------------------------------------------------------
WER: 2.000000, CER: 0.750000, loss: 7.365357
- src: "grgágr "
- res: "r r"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.666667, loss: 0.978152
- src: "grg"
- res: "r "
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.666667, loss: 1.270408
- src: "grg"
- res: "r "
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 1.365655
- src: "gsa "
- res: "b"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.750000, loss: 1.641714
- src: "gahg"
- res: "bg"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.400000, loss: 1.725150
- src: "bgga "
- res: "bgg"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 1.827598
- src: "ggl "
- res: "b"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 1.000000, loss: 1.866848
- src: "gacw "
- res: "b"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.714286, loss: 1.869485
- src: "gáicdi "
- res: "di"
--------------------------------------------------------------------------------
WER: 1.000000, CER: 0.400000, loss: 1.982887
- src: "bggrp"
- res: "bgg"
--------------------------------------------------------------------------------
No Comments