Speech Recognition

Crow

° Deep Speech import

° Crow res

®* Text conversion command

* Deep speech build

Deep Speech decoder breakdown

° Generate trie

° Deep Speech Scorer Refactor

° Potentially using tensorflow api in python instead of c++
® Building mozilla with deepspeech integration
* Datasets

®* Guarani

° Data stats

° Conversion of sph files

° New Page

Crow

Deep Speech import

Loading TSV file: /home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/train.tsv
Saving new DeepSpeech-formatted CSV file to:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/train.csvImporting mp3
files...Progress

| s e s s e s e e s e e e s e s s e s s
100% completedWriting CSV file for DeepSpeech.py as:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/train.csvProgress

R e e i i e e e e
100% completed

Imported 50975 samples.

Skipped 278 samples that failed on transcript validation.Skipped 32 samples that were too

short to match the transcript.

Skipped 254 samples that were longer than 10 seconds.Final amount of imported audio: 52:28:24.
Loading TSV file: /home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/test.tsv
Saving new DeepSpeech-formatted CSV file to:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/test.csvImporting mp3
files...Progress

| e s e s e e R e e R R s s s s
| 99% completedWriting CSV file for DeepSpeech.py as:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/test.csvProgress

| s s s s s e e s s e s e s e e e e s e s e e e s s e s
100% completed

Imported 6374 samples.

Skipped 23 samples that failed on transcript validation.Skipped 2 samples that were too short
to match the transcript.

Skipped 31 samples that were longer than 10 seconds.Final amount of imported audio: 6:34:09.
Loading TSV file: /home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/dev.tsv

Saving new DeepSpeech-formatted CSV file to:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/dev.csvImporting mp3
files...Progress

| s s s e e e e e e L e e s
| 99% completedWriting CSV file for DeepSpeech.py as:
/home/kenneth/Projects/JSALT NPLM data/Speech/Deep Speech/cro/clips/dev.csvProgress

[s s e e e s e s s R s e e s e e e e e s e e e s s e s e s e e e

100% completed

Imported 6371 samples.
Skipped 36 samples that failed on transcript validation.Skipped 2 samples that were too short

to match the transcript.
Skipped 34 samples that were longer than 10 seconds.

Final amount of imported audio: 6:34:15.

Unigue characters to add to alphabet

[Ibl' |m|’ |.[:|,] |’ |e|’ |r|’ ||:I| |‘L|’ Idl, |\u.':609|, |k|, |C|’ |g|’ Iil, |a|’ Ihl, |p|’

the kenlm model needs to be built. Use the data fran sent and check this out

https://github.com/mozilla/DeepSpeech/issues/1411

Crow res

After setting alpha and beta parameters for language model to 0 (effectively negating the

language model)

--lm weight .1 \

--lm_alpha 0\

--drop_source layers 1 \ --source_model checkpoint dir
"${SOURCE_MODEL}/deepspeech-0.5.1-checkpoint/" \

--n_hidden 2048 \

--epoch -10 \

--earlystop nsteps 5 \

--train_batch size 30\

--dev_batch size 48 \

--test batch size 48 \

--learning rate 0.001 \

--dropout rate 0.2 \

Test on /home/kenneth/Projects/JSALT_NPLM_data/Speech/Deep_Speech/cro/clips/test.csv - WER:
0.990699, CER: 0.871154, loss: 27.086073

Examples:

-- WER:
2.000000, CER: 0.800000, loss: 10.316745

- src: "grgacgicr " - res: "r r"
-- WER:
1.000000, CER: 0.666667, loss: 1.255609

- src: "grg" - res: "r"
-- WER:
1.000000, CER: 0.400000, loss: 1.491453

- src: "bggrp" - res: "bgg"
-- WER:

1.000000, CER: 1.000000, loss: 1.747670

-- WER:
1.000000, CER: 1.000000, loss: 2.060837

- src: "gahg" - res: ""
-- WER:
1.000000, CER: 1.000000, loss: 2.078961

- src: "cg" - res: "'
-- WER:
1.000000, CER: 0.500000, loss: 2.292280

- src: "gg" - res: "bgg"
-- WER:
1.000000, CER: 1.000000, loss: 2.531346

- src: "cg" - res: "r"
-- WER:
1.000000, CER: 1.000000, loss: 2.713193

- src: "ccg" - res: ""
-- WER:

1.000000, CER: 1.000000, loss: 2.719913

- src: "gg" - res:

--lm weight .1 \

--1lm_alpha 0\

--drop_source layers 1 \ --source model checkpoint dir
"${SOURCE_MODEL}/deepspeech-0.5.1-checkpoint/" \

--n_hidden 2048 \

--epoch -10 \

--earlystop nsteps 5 \

--train batch size 30\

--dev_batch size 48 \

--test batch size 48 \

--learning rate 0.0001 \

--dropout _rate 0.2 \

Test on /home/kenneth/Projects/JSALT_NPLM_data/Speech/Deep_Speech/cro/clips/test.csv - WER:
0.989741, CER: 0.857567, loss: 25.778952

2.000000, CER: 0.750000, loss: 7.365357

- src: "grgdgr " - res: "r r"
-- WER:
1.000000, CER: 0.666667, loss: 0.978152

- src: "grg" - res: "r "
-- WER:
1.000000, CER: 0.666667, loss: 1.270408

- src: "grg" - res: "r "
-- WER:
1.000000, CER: 1.000000, loss: 1.365655

- src: "gsa " - res: "b"
-- WER:
1.000000, CER: 0.750000, loss: 1.641714

- src: "gahg" - res: "bg"
-- WER:
1.000000, CER: 0.400000, loss: 1.725150

- src: "bgga " - res: "bgg"
-- WER:
1.000000, CER: 1.000000, loss: 1.827598

- src: "ggl " - res: "b"
-- WER:
1.000000, CER: 1.000000, loss: 1.866848

- src: "gacw " - res: "b"
-- WER:
1.000000, CER: 0.714286, loss: 1.869485

- src: "gaicdi " - res: "di"
-- WER:

1.000000, CER: 0.400000, loss: 1.982887
- src: "bggrp" - res: "bgg"

Text conversion command

for file in “1s ../Inuit-

Yupik/ess/monolingual corpus/sivugam_nangaghnegha/sivugam volume2/volume2.gold.ess/"

do iconv -f IS0-8859-1 -t UTF-8//TRANSLIT "../Inuit-

Yupik/ess/monolingual corpus/sivugam nangaghnegha/sivugam volume2/volume2.gold.ess/$file" |
sponge "../Inuit-

Yupik/ess/monolingual corpus/sivugam_nangaghnegha/sivugam volume2/volume2.gold.ess/$file"

done

Deep speech build

These instructions are for those of us who wish to have a version of Mozilla's DeepSpeech where

they can make changes to the native client decoder.

Getting the build environment set up to enable this is a non-trivial process, and we hope that

these instructions will guide the reader through the setup in as painless a way as possible.

Many modern practices in software engineering are used, some of which may appear
counterintuitive. However, it is possible to use Bazel to build the software, so do not give up when

you face adversity!

Set up a virtualenv for
everything

Let's say you're in your home directory, make a new directory for all of the source code stuff:

$ mkdir Mozilla
$ cd Mozilla
$ virtualenv -p python3.7 tmp/deepspeech-venv/$ source

/home/fran/source/Mozilla/tmp/deepspeech-venv/bin/activate

Get the source code

Now check out your fork of DeepSpeech (We presume you have forked it and are intending to

submit pull requests)

$ git clone git@github.com:ftyers/DeepSpeech.git

Replace ftyers here with your GitHub username.
Next check out Mozilla's tensorflow fork:

$ git clone https://github.com/mozilla/tensorflow.git
$ cd tensorflow

$ git checkout origin/rl.14

$ cd ..

Next check out kenlm :
$ git clone git@github.com:kpu/kenlm.git
Now run 1s , you should have the following directories:

$ 1s

DeepSpeech kenlm tensorflow tmp

Install Bazel

In order build the native client stuff, you need Google's Bazel build system, each version of
tensorflow makes its own requirements on the version of Bazel you need. For tensorflow 1.14, you

need Bazel 0.24.1, you can install it using the following commands:

$ wget https://github.com/bazelbuild/bazel/releases/download/0.24.1/bazel-0.24.1-installer-
linux-x86 64.sh
$ bash bazel-0.24.1-installer-1linux-x86 64.sh --prefix=/home/fran/local/bin

Note that this shell script installs a binary of Bazel that is embedded in a zip file inside the shell

script, the --prefix give the location to install it. It should be in your $PATH .
Check that Bazel is working by running:

$ bazel version

Set up necessary symlinks
and build options

$ cd tensorflow
$ In -s ../DeepSpeech/native client/ .

$./configure

This is an interactive configure script. Make sure you are using python3.7 if you aren't you can

set the environment variable PYTHON BIN PATH .

You definitely want to change the "desired Python library path to use", make sure you change it to

something like:
/usr/lib/python3.7/dist-packages/

If you are building on a laptop without a GPU you can basically say no to all the other questions.

You should get something like:

$./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your
Bazel server using the command "bazel shutdown".
You have bazel 0.24.1 installed.
Found possible Python library paths:

/home/fran/local/lib/python3.7/site-packages/

/usr/lib/python3/dist-packages

/usr/local/lib/python3.7/dist-packagesPlease input the desired Python library path to use.
Default is [/home/fran/local/lib/python3.7/site-packages/]
Do you wish to build TensorFlow with XLA JIT support? [Y/n]: nNo XLA JIT support will be
enabled for TensorFlow.
Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: nNo OpenCL SYCL support will
be enabled for TensorFlow.
Do you wish to build TensorFlow with ROCm support? [y/N]: nNo ROCm support will be enabled
for TensorFlow.
Do you wish to build TensorFlow with CUDA support? [y/N]: nNo CUDA support will be enabled

for TensorFlow.

Do you wish to download a fresh release of clang? (Experimental) [y/N]: nClang will not be

downloaded.

Do you wish to build TensorFlow with MPI support? [y/N]: nNo MPI support will be enabled for
TensorFlow.

Please specify optimization flags to use during compilation when bazel option "--config=opt"
is specified [Default is -march=native -Wno-sign-compare]:

Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: nNot
configuring the WORKSPACE for Android builds.

Build native client In the
tensorflow directory

$ bazel build --workspace status command="bash native client/bazel workspace status cmd.sh" --
config=monolithic -c opt --copt=-03 --copt="-D GLIBCXX USE CXX11l ABI=0" --copt=-

fvisibility=hidden //native client:libdeepspeech.so //native client:generate trie

If you run out of memory during the build process, specify the number of jobs by adding --jobs at

the end of the bazel build command, e.g.

$ bazel build --workspace status command="bash native client/bazel workspace status cmd.sh" --
config=monolithic -c opt --copt=-03 --copt="-D GLIBCXX USE CXX11l ABI=0" --copt=-

fvisibility=hidden //native client:libdeepspeech.so //native client:generate trie --jobs 6

Compile the deepspeech
binary and language
bindings

First compile the deepspeech binary

$ cd ../DeepSpeech/native client/
$ TFDIR=../../tensorflow make deepspeech

Then compile and install the Python bindings

$ cd python
$ make bindings

$ pip install dist/deepspeech*
And the ctcdecode package:

$ cd ../ctcdecode/
$ make bindings

$ pip install dist/*.whl

Compile kenlm

cd ../../../kenlm/
mkdir build
cd build

cmake ../

R e - A -

make

Make a change in the
native client and rebuild it

Make a change in the native client code:

$ cd ../../tensorflow/

Now edit native client/ctcdecode/scorer.cpp , you can add something like:
std::cerr << "Scorer::setup()" << lm path << " ||| " trie path << std::endl;

And then try and rebuild:

First you need to run make clean in native client/ctcdecode

cd native client/ctcdecode
make clean

cd ../../

This is because the build leaves behind some .h files that are picked up by a build rule

somewhere.
And then you can rebuild:
bazel build --workspace status command="bash native client/bazel workspace status cmd.sh" --

config=monolithic -c opt --copt=-03 --copt="-D GLIBCXX USE CXX11l ABI=0" --copt=-

fvisibility=hidden //native client:libdeepspeech.so //native client:generate trie

Now set up some data and
try it out

First of all, set up a language model with KenLM:
You'll need some English text, you can get it from OPUS
$ cd ../DeepSpeech/data/lm$ wget http://opus.nlpl.eu/download.php?f=SETIMES/v2/moses/en-

tr.txt.zip -0 en-tr.txt.zip

$ unzip en-tr.txt.zip

$../../../kenlm/build/bin/lmplz -0 5 < SETIMES.en-tr.en > lm.arpa$
../../../kenlm/build/bin/build binary lm.arpa lm.binary$ cat SETIMES.en-tr.en | sed
's/./&\n/g' | sort -u > alphabet.txt$../../../tensorflow/bazel-

bin/native client/generate trie alphabet.txt lm.binary trie

Now you can run the demo:

$cd../../
$ pip3 install -r requirements.txt

$./bin/run-1dc93s1.sh

It should finish with:

10717 14:56:33.608065 139972947781440 saver.py:1280] Restoring parameters from
/home/fran/.local/share/deepspeech/1dc93s1/train-800I Restored variables from most recent
checkpoint at /home/fran/.local/share/deepspeech/1dc93s1/train-800, step 800Testing model on
data/1dc93s1/1dc93s1.csv

I Test epoch...Test on data/1dc93s1/1dc93sl.csv - WER: 1.000000, CER: 0.980769, loss: 0.005800

1.000000, CER: 0.980769, loss: 0.005800 - src: "she had your dark suit in greasy wash water

all year" - res: "i

The change-build-test loop

If you make a change to native client , you need to go back to the tensorflow directory and run:
$ bazel build --workspace status command="bash native client/bazel workspace status cmd.sh" --
config=monolithic -c opt --copt=-03 --copt="-D GLIBCXX USE CXX11l ABI=0" --copt=-
fvisibility=hidden //native client:libdeepspeech.so //native client:generate trie --
verbose failures

Then after that you need to go back to the DeepSpeech/native_client directory

$ cp ../../tensorflow/bazel-bin/native client/libdeepspeech.so /home/fran/local/lib/

for me this is inside my virtualenv e.g.
~/deep-speech-env/lib/python3.6/site-packages/deepspeech/1lib/1libdeepspeech.so

2211 cd ../DeepSpeech/native client/
2212 cd ctcdecode/

2213 make bindings

2216 pip install -U dist/*.whl

2220 cd native client/

2221 cd python/

2223 make bindings

2226 pip3 install -U dist/*

when doing this, something else is missing. e.g. something is hanging around. The rebuilt version

is still printing a ton of debug statements even though | have removed these.

Deep Speech decoder
breakdown

Generate trie

This issues a call to scorer::setup()?

Deep Speech decoder breakdown

Deep Speech Scorer
Refactor

| have successfully renamed all variables dealing with the scorer and reran everything. The next

step is to refactor into a generic and an inherited version.

Deep Speech decoder breakdown

Potentially using tensorflow
api in python instead of c++

the tensorflow api in c++ is a bear to use. no one really uses it much and it has some noteworthy

differences from the ubiquitous python api.

the issue is that the scorer in ds_ctcdecoder is built using a bunch of c++ code with swig wrappers

to expose the functionality to python.

much of my previous work has involved writing a new scorer in c++ using the c++ tensorflow api

and then wrapping this in swig methods like the existing scorer.

i've spent countless hours just trying to get bazel to build things correctly and | have had very

[imited success.

in particular the error i'm running into now is that | don't know how to build against the flatbuffer

library that is required for reading in tensorflow lite model files.

one alternative course of action is to use the python api for tensorflow which comes with the

benefit of having more documentation and community support behind it.

the issue is that it's unclear how to integrate python in with the wrapped c++ code in a way that's

maintainable for the future of deepspeech.

| cannot modify the swigwrapper.py file as this is autogenerated and is removed upon each make

clean in the ctc_decoder directory.

Building mozilla with
deepspeech integration

https://treeherder.mozilla.org/#/jobs?repo=try&revision=5266680e9e43df3dd2a922b334ce9b33df73aba
Treeherder

you need to pick your build

then click the "task" 1link in the bottom leftthen in the new page, click on tha "artifatcs"
tab

then pick target.zip or target.dmg

that's your firefox build

extract, run with "./firefox -no-remote -profileManager'create a profile named "webspeechapi"
close

run with "./firefox -no-remote -P webspeechapi'once opened, go to about:config, search for
webspeech.recognition, toggle both prefs to true

then go to about:deepspeechclick "install lib", wait for the download & extraction to complete
you should then get a reload, and be able to click "install en-us"wait again for download &
extraction, it should reload another time, and you should see some model parameters as well

as "English (US)"

then you can go to, for example, translate.google.comyou will have a mic in the bottom left

of the input box once you select "English" as an input language

please keep that to you

this is **very** preliminary code

I don't have to have people playing with it

at least not outside of my knowledge

Datasets

Guarani BABEL is stored at
/nas/data/lorelei/ldc_downloads/LDC2016E19 TIARPA Babel Guarani Language Pack TIARPA-babel305b-v1.0

on givalluk and kulusiq.

Guarani

Using pytorch deepspeech

Data stats

Conversational training: 37.55 hours
find wav/ | xargs -I {} -r soxi -D {} | awk '{sum += $1} END {print sum}'

Scripted training: 12.82 hours (using same command in the scripted training dir)

Guarani

Conversion of sph files

(metalearn) (base) kenneth@mwanafunzi:/home/data/corpora/speech/IARPA-babel305b-v1.0c-build$ find -

New Page

Early stuff | was doing was seeing the first epochs perform the best and high sensitivity to number
of rnn layers (less was performing better) this ended up being because the gradients were

exploding.
To solve this, | specified --max-norm 1 which forces gradient clipping.
Ended up getting 66 CER after 10 epochs.

Trying again with 100 epochs and data augmentation (pitch peturbation and gain modulation).

python train.py --train-manifest data/train_combined.csv --val-manifest
data/_home data corpora speech IARPA-babel305b-v1.0c-

build converted BABEL OP3 305 conversational dev_ manifest.csv --model-path
models/100epoch2.pth --max-norm 1 --epochs 100 --opt-level 00 --cuda --augment --labels-path
data/BABEL/guarani labels.json --tensorboard

python train.py --train-manifest data/train_combined.csv --val-manifest
data/ _home data corpora speech IARPA-babel305b-v1.0c-

build converted BABEL OP3 305 conversational dev_ manifest.csv --model-path
models/100epoch2.pth --max-norm 50 --epochs 100 --opt-level 00 --cuda --augment --labels-path

data/BABEL/guarani_labels.json --tensorboard --augment

1 gru successful

python train.py --train-manifest data/train combined.csv --val-manifest

data/ home data corpora speech IARPA-babel305b-v1.0c-

build converted BABEL OP3 305 conversational dev_ manifest.csv --model-path
models/1 hi aug.pth --max-norm 100 --hidden-layers 1 --epochs 20 --opt-level 00 --cuda --
labels-path data/BABEL/guarani labels.json --loss-scale 1 --tensorboard --id

1 hid max norm 100

result: WER 88.366 CER 43.116

still achieving better performance
after 20 epochs, so | should rerun
with more epochs

2 gru

python train.py --train-manifest data/train_combined.csv --val-manifest

data/_home_data corpora_speech IARPA-babel305b-v1.0c-

build converted BABEL OP3 305 conversational dev_ manifest.csv --model-path
models/2 hi aug.pth --max-norm 100 --hidden-layers 2 --epochs 40 --opt-level 00 --cuda --
labels-path data/BABEL/guarani labels.json --loss-scale 1 --tensorboard --id

2 hid max norm 100

results with max norm = 100

Average WER = 74.590 Average CER = 29.756

Going to try again with higher max norm (default 400) and see how that goes. Before the

gradients were exploding when | did that.

3 gru

max norm = 100, after 40 epochs: WER = 60.519 CER = 21.876

4 gru

max norm = 100, after 40 epochs: WER = 52.413 CER = 17.833

5 gru

(ran on givalluk). 40 epochs, Average WER 14.239 Average CER 3.655. Used nearly all default

arguments.

