
Two basic approaches to dependency parsing are all pairs and stepwise.

All pairs = graph based
stepwise = transition based

"All pairs" approaches make decisions globally, use exact inference but have relatively 
impoverished features

"stepwise" approaches make greedy decisions, but have a rich feature representation including 
past decisions.

Both achieve similar performance but the kinds of errors they make are different. Segue and Lavie 
(2006) shwo that combining the predictions of both types of models yields "significantly improved 
accuracy" This paper is going to talk about the strengths and weaknesses of the approaches.

Characterizing the Errors of 
Data-Driven Dependency 
Parsing Models
McDonald & Nivre 2007
Background



Describes what a dependency tree is, & graph based and transition based dependency parsing. 
Overall, Kuebler et al (2009) has a more thorough discussion of the different approaches.

Labels are portrayed as part of the scoring function in this work. I believe how scoring labels works 
varies between different approaches but I have to look further into this

MSTparser is the implementation used.

Two models for dependency 
parsing

Preliminaries

Global Graph based parsing

The primary disadvantage of these models is that the feature representation is 
restricted to a limited number of graphs arcs. This restriction is required so that 
both inference and learning are tractable

“

Local, Greedy, Transition-Based Parsing
The primary advantage of these models is that afeatures are not restricted to a 
limited number of graph arcs but can take into account the entire dependency 
graph built so far. The main disadvantage is that the greedy parsing strategy 
may lead to error propogation.

“

https://wiki.ksteimel.duckdns.org/books/reading-notes/page/dependency-parsing


13 languages 19 systems labeled attachment score was official metric (percentage of tokens, 
excluding punctuation, that are assigned botht he correct head and the correct dependency label).

All current parsers have more trouble on longer sentences. MaltParser performs better in shorter 
sentences, worse as sentences get longer. Attributed to likelihood of error propogation being 
higher for longer sentences and richer feature representation as beneficial for short sentences.

MSTParser far more precise than MaltParser for longer dependency arcs (where the length is the 
length of the predicted arc). MaltParser does better for shorter dependency arcs. Overall 
MSTParser is not affected by dependency length.

MSTParser is far more precise close to the root and is less precise then Malt further from the root.

Dependency arcs further from the root are (usually) created first in transition based systems. Thus 
this is further evidence that error propogation is partly to blame for the difference between the 
two approaches.

CONLL-X shared task

Error analysis

Graph factors

MSTParser over predicts arcs near the bottom of the graph. Whereas MaltParser 
pushes difficult parsing decisions higher in the graph, MST Parser appears to 
push these decisions lower

“

Linguistic Factors



Findings with regard to part of speech associations are tied to previous findings of position in 
graph.

Adpositions are a bit strange because they have high average root distance and low average 
dependency length but MSTParser does okay on them.

Revision #5 
Created Thu, May 7, 2020 4:33 PM by kenneth
Updated Thu, May 7, 2020 5:17 PM by kenneth

https://wiki.ksteimel.duckdns.org/user/3
https://wiki.ksteimel.duckdns.org/user/3

