
This chapter discusses how to clone a repository. This is most likely the first thing one will do with
a git repo. With modern git platforms like github, bitbucket, gitea and gitlab, initialization of
repositories is not typically done.

Instead, the repo is initialized on the server managed by one of these git platforms and then the
repository is cloned onto your local machine.

There are two protocols used to clone a repository: ssh and https. Both are secure and encrypted
in their transfer and both are rather quick. I prefer to use ssh as my git workflow is improved with
the use of this protocol. This is because, particularly with the lengthy passphrases required by
Indiana University, the IU Github instance is a pain to pull and push from. By using ssh, my key can
have whatever password I want or no password at all while still maintaining a high level of
security.

Here are some of the primary differences between the two protocols with regard to how one
interracts with them in git. You can switch the protocol used after the initial clone. However, it is
simpler to clone using the protocol that you prefer right from the start.

More initial setup is required to use ssh with git. The urls for cloning using ssh typically look
something like this

git@bitbucket.org/ksteimel/test_project.git

Let's break this down really quick. The beginning git@ part says that this ssh protocol is actually
using the git user on the server. In order for this to work, the server needs to have a preshared key
from our local machine.

To generate this key and put it on the server, follow the following instructions on a mac or linux
machine:

Cloning a Repository

To clone a repository

SSH

1. Check to see if there is a file in ~/.ssh/ that ends in .pub . The default file is normally
called id_rsa.pub on most modern systems.

2. If this file does exist, and you know the password associated with this key, simply open
the file in your favorite text editor, copy the content to your clipboard and paste the
contents into a new key in the web interface to the git server. Creating a new key is
usually done by accessing your user settings (by clicking on your user icon and then
clicking 'Settings') and then going to the submenu dealing with SSH & GPG keys.

3. If this file does not exist, create the file
1. Run the command ssh-keygen on your local machine as the user you would like

to use for this repo.
2. This program will prompt you for the location where you would like to store the

keys as well as the password for the keys. Typically, I leave these both at their
defaults on OpenSuse which is ~/.ssh/id_rsa.pub for the location and nothing
for the password.

3. If you have a different key location/name, you will need to add some content to
your ssh config file. In ~/.ssh/config put the following:

4. Never upload your private key. This will not work and it will also leave your
system exposed. Private keys are to be guarded closely, public keys are to share
around.

Host github.com

IdentityFile <path to identify file>

User git

4. After the public key file has been created, you should add this public key to the git
server's web management system using the instructions in 2

To use https, simply select the https url option when cloning. There is no additional setup required.
However, every time you push or pull, you will have to enter your username and password. If you
use the credential helper, this can allow you to avoid this annoyance. To do this, run the following
git config credential.helper store . You should only be prompted for your username and

password one more time and then git should remember. If you need to change your credentials for
any reason, just rerun that command and then you'll be prompted for credentials the next time
you pull.

HTTPS

Revision #5
Created Mon, Sep 17, 2018 9:43 PM by kenneth
Updated Thu, Feb 14, 2019 3:50 PM by kenneth

https://wiki.ksteimel.duckdns.org/user/3
https://wiki.ksteimel.duckdns.org/user/3

