
One of the most powerful functionalities provided by git is the checkout functionality.

This command can be used to do a number of different things including:

Creating a new branch
Switching to a different branch
Updating the working tree
Moving to a different commit on the current branch
Creating a new branch at a previous commit point

I'll go over each of these functionalities and provide a use case for them as well.

This can be useful if there are multiple people working on a project where there are subgroups in
the project that are working on different parameter settings or different feature extraction
methods. Rather than create two different directories where the files live, you can create two
separate branches and use the checkout command to switch between them.

To create a new branch use the following syntax

Now that this new branch is created though, how do you quickly switch back and forth between
them? The answer is to essentially leave out the -b flag.

The most common case where I use this functionality is to get back a file that I accidentally

Checkout

Creating a new branch

git checkout -b <new branch name>

Switching to a different branch

git checkout <target branch name>

Updating the working tree

deleted from my file system. Running git checkout <file path> will bring the latest version of that
file into your repo, even if that file has been deleted by mistake.

If there's a previous commit that you would like to roll back to, for example, if you need to
examine the previous way that some system was running, you can checkout an individual commit
from the past. To do this, you will need to obtain the shortened hexidecimal commit hash. One
way to obtain this is using the git log command. I recommend using the git hist alias
discussed elsewhere in this chapter.

Another way is to look at the repository in the git web interface on the server where your
repository is hosted. There will typically be a place to view the commit history on these web
interfaces. Then you can copy the commit code and paste it into the appropriate spot in your
command line.

For example,

Where 79b47a4 is an example commit code.

However, the previous command will put your local repository into a detached head state. You can
do most git things but you are not currently on a branch terminal so some operations like merging
will not work. The solution is to create a new branch when you rewind to a previous commit. This
essentially combines the methods from two of the previous sections. Simply run

Moving to a different commit on the
current branch

git checkout 79b47a4

Creating a new branch at the previous
commit point

git checkout -b <new branch name> <commit hash>

Revision #2
Created Wed, Sep 19, 2018 1:56 AM by kenneth
Updated Wed, Sep 19, 2018 2:24 AM by kenneth

https://wiki.ksteimel.duckdns.org/user/3
https://wiki.ksteimel.duckdns.org/user/3

