
This book is a work in progress. It details pieces of tech that are necessary for Computational
Linguistics and Natural Language Processing. This is primarily created for fellow students at my
school (Indiana University - Bloomington). Though I've made this publically available. If someone
else finds this useful, send me an email at ksteimel@iu.edu.

Git basics
Cloning a Repository
Git hist
Introduction
Checkout

Supercomputer tools
Containers on IU supercomputers
Supercomputer info
Notes on Screen
AMD optimized crfsuite

Organizational Information
ClingDing Spring 2019
CLINGDING Fall 2019

julia
Graphing

Python notes

Practical Tools for
Computational
Linguistics

Docstring example
CRF-suite on AVX2 cpus

AllenNLP
Notes

Git is an invaluable tool to programmers and computational linguists alike. Version control is a
powerful tool that can make integration with large groups of people a breeze and allow one to
rectify regressions promptly. This is not a very intricate tutorial for how git works under the hood
(though there is a small bit of discussion about this). The primary focus is in how to use git
effectively.

Git basics

Git basics

This chapter discusses how to clone a repository. This is most likely the first thing one will do with
a git repo. With modern git platforms like github, bitbucket, gitea and gitlab, initialization of
repositories is not typically done.

Instead, the repo is initialized on the server managed by one of these git platforms and then the
repository is cloned onto your local machine.

There are two protocols used to clone a repository: ssh and https. Both are secure and encrypted
in their transfer and both are rather quick. I prefer to use ssh as my git workflow is improved with
the use of this protocol. This is because, particularly with the lengthy passphrases required by
Indiana University, the IU Github instance is a pain to pull and push from. By using ssh, my key can
have whatever password I want or no password at all while still maintaining a high level of
security.

Here are some of the primary differences between the two protocols with regard to how one
interracts with them in git. You can switch the protocol used after the initial clone. However, it is
simpler to clone using the protocol that you prefer right from the start.

More initial setup is required to use ssh with git. The urls for cloning using ssh typically look
something like this

git@bitbucket.org/ksteimel/test_project.git

Cloning a Repository

To clone a repository

SSH

Let's break this down really quick. The beginning git@ part says that this ssh protocol is actually
using the git user on the server. In order for this to work, the server needs to have a preshared key
from our local machine.

To generate this key and put it on the server, follow the following instructions on a mac or linux
machine:

1. Check to see if there is a file in ~/.ssh/ that ends in .pub . The default file is normally
called id_rsa.pub on most modern systems.

2. If this file does exist, and you know the password associated with this key, simply open
the file in your favorite text editor, copy the content to your clipboard and paste the
contents into a new key in the web interface to the git server. Creating a new key is
usually done by accessing your user settings (by clicking on your user icon and then
clicking 'Settings') and then going to the submenu dealing with SSH & GPG keys.

3. If this file does not exist, create the file
1. Run the command ssh-keygen on your local machine as the user you would like

to use for this repo.
2. This program will prompt you for the location where you would like to store the

keys as well as the password for the keys. Typically, I leave these both at their
defaults on OpenSuse which is ~/.ssh/id_rsa.pub for the location and nothing
for the password.

3. If you have a different key location/name, you will need to add some content to
your ssh config file. In ~/.ssh/config put the following:

4. Never upload your private key. This will not work and it will also leave your
system exposed. Private keys are to be guarded closely, public keys are to share
around.

Host github.com

IdentityFile <path to identify file>

User git

4. After the public key file has been created, you should add this public key to the git
server's web management system using the instructions in 2

To use https, simply select the https url option when cloning. There is no additional setup required.
However, every time you push or pull, you will have to enter your username and password. If you
use the credential helper, this can allow you to avoid this annoyance. To do this, run the following
git config credential.helper store . You should only be prompted for your username and

password one more time and then git should remember. If you need to change your credentials for
any reason, just rerun that command and then you'll be prompted for credentials the next time
you pull.

HTTPS

Git basics

This is an excellent alias for git hist to add to your .gitconfig file

This page has an excellent discussion of how to add this alias to your .gitconfig file. This website is
also the source of this handy alias.

The result is a description of the repository's history with color charts showing the different
branches. It's all done in the terminal too!

This is an example of what the hist command produces.

Git hist

git log --pretty=format:"%h %ad | %s%d [%an]" --graph --date=short

https://githowto.com/aliases

Git basics

The Guided Git Tutorial is an invaluable resource for learning how to effectively use git. This
chapter is simliar and draws from this tutorial in many ways. However, the focus here is to provide
a more step by step explanation of how to use the pieces of git that are important for
computational linguists to know how to use.

Yue Chen and I have also prepared other materials to assist with learning git as well. Namely the
presentation in the sidebar of this page. In addition, I have a git repository that walks you through
many of the topics discussed in this chapter.

Introduction

https://githowto.com/
https://github.com/ksteimel/SentimentBench

Git basics

One of the most powerful functionalities provided by git is the checkout functionality.

This command can be used to do a number of different things including:

Creating a new branch
Switching to a different branch
Updating the working tree
Moving to a different commit on the current branch
Creating a new branch at a previous commit point

I'll go over each of these functionalities and provide a use case for them as well.

This can be useful if there are multiple people working on a project where there are subgroups in
the project that are working on different parameter settings or different feature extraction
methods. Rather than create two different directories where the files live, you can create two
separate branches and use the checkout command to switch between them.

To create a new branch use the following syntax

Now that this new branch is created though, how do you quickly switch back and forth between
them? The answer is to essentially leave out the -b flag.

Checkout

Creating a new branch

git checkout -b <new branch name>

Switching to a different branch

The most common case where I use this functionality is to get back a file that I accidentally
deleted from my file system. Running git checkout <file path> will bring the latest version of that
file into your repo, even if that file has been deleted by mistake.

If there's a previous commit that you would like to roll back to, for example, if you need to
examine the previous way that some system was running, you can checkout an individual commit
from the past. To do this, you will need to obtain the shortened hexidecimal commit hash. One
way to obtain this is using the git log command. I recommend using the git hist alias
discussed elsewhere in this chapter.

Another way is to look at the repository in the git web interface on the server where your
repository is hosted. There will typically be a place to view the commit history on these web
interfaces. Then you can copy the commit code and paste it into the appropriate spot in your
command line.

For example,

Where 79b47a4 is an example commit code.

However, the previous command will put your local repository into a detached head state. You can

git checkout <target branch name>

Updating the working tree

Moving to a different commit on the
current branch

git checkout 79b47a4

Creating a new branch at the previous
commit point

do most git things but you are not currently on a branch terminal so some operations like merging
will not work. The solution is to create a new branch when you rewind to a previous commit. This
essentially combines the methods from two of the previous sections. Simply run

git checkout -b <new branch name> <commit hash>

This describes some information about the super computer tools that are available at IU as well as
information on how to use these tools.

Supercomputer tools

Supercomputer tools

Karst, Carbonate and Big Red II have the singularity package available which allows users to run
docker or singularity images on the supercomputers. This can be a great way to run programs that
are not installed on the supercomputers.

To use singularity, load the module

Then pull down an image. You can pull an image from dockerhub or singularity's hub.

Unlike docker, singularity creates a file that contains the image specification. To run the container
use the image file generated by your pull command.

For more information, please see the singularity documentation.

Containers on IU
supercomputers

module add singularity

singularity pull docker://julia:latest

singularity exec <local image> <cmd>

singularity exec julia-latest.simg julia

https://www.sylabs.io/guides/2.6/user-guide/quick_start.html

Supercomputer tools

Carbonate node: 710.223 GFLOPS on intel mkl linpack

If you need to get 32GB of VRAM on Carbonate-dl

Supercomputer info

From a previous help ticket: "dl[11,12] are in fact v100-16GB parts. If the user needs v100-

32GB they’ll need to add a “-w <node>“, where <node> is dl1 or dl2."

Supercomputer tools

On super computers like those at IU, it is essential to use a screen session for submitting
interactive jobs. Screen basically emulates a user sitting at the computer screen. It accepts output
and can give input. However, you can detach from screen sessions and log out from the computer
without causing running jobs to terminate.

Notes on Screen

It is a good idea to use screen
sessions

Here are some notes
provided by IU's Knowledge
Base

https://kb.iu.edu/d/ahrm
https://kb.iu.edu/d/ahrm

In some cases, your previous screen session may not have detached properly when you lost your
connection. If this happens, you can detach your session manually.

To see your existing screen sessions, enter:

This will display a list of your current screen sessions. For instance, if you had one attached and
one dead screen, you would see:

To detach an attached screen, enter:

If you have more than one attached screen, you can specify a particular screen to detach. For
example, to detach the screen in the above example, you would enter:

Once you've done this, you can resume the screen by entering the screen -r command.

(In the above example, the dead screen isn't causing problems, but you should probably enter the
screen -wipe command to get rid of it.)

When you can't re-attach to your
screen session after a lost
connection

 screen -list

 There are screens on: 25542.pts-28.hostname (Dead ???) 1636.pts-21.hostname (Attached)

Remove dead screens with 'screen -wipe'. 2 Sockets in /tmp/screens/S-username.

 screen -D

 screen -D 1636.pts-21.hostname

Supercomputer tools

The bundled binary from python-crfsuite and sklearn-crfsuite performs rather badly on amd
processors.

For example, in a trial run with training a small pos tagger on an AMD Epyc 7601, each iteration in
the hyperparameter search took about 1 minute 15 seconds. This is only with a small training set
of about 400 sentences. With the full 6,000 sentences available it takes upwards of 4 days to finish
a single run. Rough.

However, on a dual intel E5-2680 system (16 cores at 3.2 Ghz all core turbo), the performance is
much faster. On that same small dataset of 400 sentences, each iteration takes about 30 seconds,
the entire hyperparameter search over 50 combinations takes 2 minutes.

This appears to be due to the fact that the binaries that ship with sklearn-crfsuite were compiled
on an intel platform.

To fix this, I created a fork of python-crfsuite that uses the avx2 instructions available on amd's
zen processors (this should also help with newer intel processors that have avx extensions).

This fork is available at https://github.com/ksteimel/python-crfsuite.git

To use this, clone the repo

AMD optimized crfsuite

Problem

Solution

Then change into the new directory.

cd python-crfsuite

it's a good idea to create a virtual environment so if you decide you don't want to use this version,
you don't have to.

Then, we need to build the package.

Now you should have an optimized build of python-crfsuite You can then install sklearn-crfsuite .

To get out of your virtual environment run,

The whole point of this was to speed up performance on amd processors with crfsuite. If we go
back to our small training dataset, we see a substantial boost in performance.

We've now gone from one minute 15 seconds per iteration to only 30ish seconds per iteration.

It may seem somewhat shocking that the amd processor is only about as fast per iteration as the
intel processor. However, the amd processor has double the number of cores (32 instead of 16)

git clone --recurse-submodules https://github.com/ksteimel/python-crfsuite.git

virtualenv -p <your python location> <path to virtualenv>source <path to

virtualenv>/bin/activate

python setup.py build

python setup.py install

pip install sklearn-crfsuite

pip install scikit-learn

deactivate

How did we do?

with a lower clock speed. (2.2 Ghz for the epyc processor compared to 3.2 for the intel procesor). If
we look at the entire grid search across 50 parameters, we see the core advantage of the epyc
processor emerge: the grid search finished in only 1.1 minutes on the AMD processor while it took
2.0 minutes on the pair of intel processors.

Not too shabby for 2 minutes of work.

Organizational Information

Organizational Information

January 23rd Coffee @ Pourhouse

January 30th NACLO grading party

February 6th Coffee

February 13th git tutorial (Yue Chen & Ken Steimel)

February 20th Noon -- 1: Mel Andresen
4 -- 5: Coffee

February 27th Job/Internship hunting

March 6th Coffee

March 20th Yue Chen
Ken Steimel :: Cross Language Tagging in Luyia

March 27th Coffee

April 3rd Yue, Ken, Leah, Noor, Zhouyu :: Abusive Language Detection
Hai Hu

April 10th Coffee

April 17th Noor Abomokh

April 24th Automated testing in python (Ken Steimel)

May 1st Coffee

ClingDing Spring 2019

https://thepourhousecafe.com/
http://nacloweb.org/

Organizational Information

9-4: Coffee (crumble 10th and college)
9-11: Internship: noor, josephine, ken, hai
9-18: Coffee
9-25: Yue
10-02: Coffee
10-9: Nastia
10-16: Coffee
10-23:
10-30: Coffee
11-6:
11-13: Coffee
11-20:
11-27: Thanksgiving
12-4: Coffee
12-11: Becca
12-18: Coffee

CLINGDING Fall 2019

julia

julia

The GR package seems to be much quicker to get to first graphing than the pyplots.jl, Gadfly.jl or
other packages. However, I do like the way gadly looks better.

VegaLite also seems to be a rather quick package

Graphing

Python notes

Python notes

Docstring example
class Albatross(object): """A bird with a flight speed exceeding that of an unladen

swallow.

 Attributes:

 flight_speed The maximum speed that such a bird can attain.

nesting_grounds The locale where these birds congregate to reproduce.

 """

 flight_speed = 691

 nesting_grounds = "Throatwarbler Man Grove"

Python notes

using sklearn-crfsuite or python-crfsuite on an AMD system can be very slow due to optimizations
in the precompiled wheel files that are specific to intel processors.

I have a branch of python-crfsuite that has flags for avx2 instructions. To see if your cpu supports
avx2 instructions, examine the output of lscpu | grep avx2 . If anything is returned, then your cpu
supports the avx2 instruction set.

CRF-suite on AVX2 cpus

To use this fork:
Create a virtual environment for this
version of python-crfsuite

virtualenv ~/venvs/crfsuite

source ~/venvs/crfsuite/bin/activate

Clone my fork of python-crfsuite
git clone --recurse-submodules git@github.com:ksteimel/python-crfsuite.git

Build python-crfsuite
python setup.py build

python setup.py install

Even on intel cpus that support avx2 instructions, the time taken to complete a grid search is
reduced. For example, a 5 fold grid search with 10 parameter combinations (e.g. 50 total runs)
takes 4 minutes to complete using the version in pypi (on a POS tagging problem in a Turkic
language). The avx2 compiled version completes in 3 minutes. This becomes more pronounced as
the size of the tagset increases.

Using avx only (e.g. changing -mavx2 to -mavx in the setup.py scipt) still results in improvements
to performance. On a pair of intel e5-2680, here are the runtimes for this same benchmark script
in minutes. Note that the avx on setting for 16 is having trouble even keeping the cpus loaded
because the grid search runs are finishing too fast. This is an issue when the number of tags is
small as each task in grid search finishes very quickly and most of the time is spent on task
overhead. with longer running tasks, the difference is more noticable.

n_jobsavx
off

avx
on

8 3.5 2.7

16 2.8 2.5

Install additional dependencies
pip install sklearn-crfsuite

pip install scikit-learn

How much does this help?

AllenNLP

AllenNLP

If you're running pytest and you have your own modules, sometimes it's necessary to run pytest
as a python module.

This automatically imports the current directory into your PYTHONPATH.

Just using pytest by itself can cause issues even with python_paths = ./ in your pytest.ini .

Notes

python -m pytest

