
This describes some information about the super computer tools that are available at IU as well as
information on how to use these tools.

Containers on IU supercomputers
Supercomputer info
Notes on Screen
AMD optimized crfsuite

Supercomputer
tools

Karst, Carbonate and Big Red II have the singularity package available which allows users to run
docker or singularity images on the supercomputers. This can be a great way to run programs that
are not installed on the supercomputers.

To use singularity, load the module

Then pull down an image. You can pull an image from dockerhub or singularity's hub.

Unlike docker, singularity creates a file that contains the image specification. To run the container
use the image file generated by your pull command.

For more information, please see the singularity documentation.

Containers on IU
supercomputers

module add singularity

singularity pull docker://julia:latest

singularity exec <local image> <cmd>

singularity exec julia-latest.simg julia

https://www.sylabs.io/guides/2.6/user-guide/quick_start.html

Carbonate node: 710.223 GFLOPS on intel mkl linpack

If you need to get 32GB of VRAM on Carbonate-dl

Supercomputer info

From a previous help ticket: "dl[11,12] are in fact v100-16GB parts. If the user needs v100-

32GB they’ll need to add a “-w <node>“, where <node> is dl1 or dl2."

On super computers like those at IU, it is essential to use a screen session for submitting
interactive jobs. Screen basically emulates a user sitting at the computer screen. It accepts output
and can give input. However, you can detach from screen sessions and log out from the computer
without causing running jobs to terminate.

Notes on Screen

It is a good idea to use screen
sessions

Here are some notes
provided by IU's Knowledge
Base

When you can't re-attach to your
screen session after a lost
connection

https://kb.iu.edu/d/ahrm
https://kb.iu.edu/d/ahrm

In some cases, your previous screen session may not have detached properly when you lost your
connection. If this happens, you can detach your session manually.

To see your existing screen sessions, enter:

This will display a list of your current screen sessions. For instance, if you had one attached and
one dead screen, you would see:

To detach an attached screen, enter:

If you have more than one attached screen, you can specify a particular screen to detach. For
example, to detach the screen in the above example, you would enter:

Once you've done this, you can resume the screen by entering the screen -r command.

(In the above example, the dead screen isn't causing problems, but you should probably enter the
screen -wipe command to get rid of it.)

 screen -list

 There are screens on: 25542.pts-28.hostname (Dead ???) 1636.pts-21.hostname (Attached)

Remove dead screens with 'screen -wipe'. 2 Sockets in /tmp/screens/S-username.

 screen -D

 screen -D 1636.pts-21.hostname

The bundled binary from python-crfsuite and sklearn-crfsuite performs rather badly on amd
processors.

For example, in a trial run with training a small pos tagger on an AMD Epyc 7601, each iteration in
the hyperparameter search took about 1 minute 15 seconds. This is only with a small training set
of about 400 sentences. With the full 6,000 sentences available it takes upwards of 4 days to finish
a single run. Rough.

However, on a dual intel E5-2680 system (16 cores at 3.2 Ghz all core turbo), the performance is
much faster. On that same small dataset of 400 sentences, each iteration takes about 30 seconds,
the entire hyperparameter search over 50 combinations takes 2 minutes.

This appears to be due to the fact that the binaries that ship with sklearn-crfsuite were compiled
on an intel platform.

To fix this, I created a fork of python-crfsuite that uses the avx2 instructions available on amd's
zen processors (this should also help with newer intel processors that have avx extensions).

This fork is available at https://github.com/ksteimel/python-crfsuite.git

To use this, clone the repo

AMD optimized crfsuite

Problem

Solution

git clone --recurse-submodules https://github.com/ksteimel/python-crfsuite.git

Then change into the new directory.

cd python-crfsuite

it's a good idea to create a virtual environment so if you decide you don't want to use this version,
you don't have to.

Then, we need to build the package.

Now you should have an optimized build of python-crfsuite You can then install sklearn-crfsuite .

To get out of your virtual environment run,

The whole point of this was to speed up performance on amd processors with crfsuite. If we go
back to our small training dataset, we see a substantial boost in performance.

We've now gone from one minute 15 seconds per iteration to only 30ish seconds per iteration.

It may seem somewhat shocking that the amd processor is only about as fast per iteration as the
intel processor. However, the amd processor has double the number of cores (32 instead of 16)
with a lower clock speed. (2.2 Ghz for the epyc processor compared to 3.2 for the intel procesor). If
we look at the entire grid search across 50 parameters, we see the core advantage of the epyc

virtualenv -p <your python location> <path to virtualenv>source <path to

virtualenv>/bin/activate

python setup.py build

python setup.py install

pip install sklearn-crfsuite

pip install scikit-learn

deactivate

How did we do?

processor emerge: the grid search finished in only 1.1 minutes on the AMD processor while it took
2.0 minutes on the pair of intel processors.

Not too shabby for 2 minutes of work.

