
Git is an invaluable tool to programmers and computational linguists alike. Version control is a
powerful tool that can make integration with large groups of people a breeze and allow one to
rectify regressions promptly. This is not a very intricate tutorial for how git works under the hood
(though there is a small bit of discussion about this). The primary focus is in how to use git
effectively.

Cloning a Repository
Git hist
Introduction
Checkout

Git basics

This chapter discusses how to clone a repository. This is most likely the first thing one will do with
a git repo. With modern git platforms like github, bitbucket, gitea and gitlab, initialization of
repositories is not typically done.

Instead, the repo is initialized on the server managed by one of these git platforms and then the
repository is cloned onto your local machine.

There are two protocols used to clone a repository: ssh and https. Both are secure and encrypted
in their transfer and both are rather quick. I prefer to use ssh as my git workflow is improved with
the use of this protocol. This is because, particularly with the lengthy passphrases required by
Indiana University, the IU Github instance is a pain to pull and push from. By using ssh, my key can
have whatever password I want or no password at all while still maintaining a high level of
security.

Here are some of the primary differences between the two protocols with regard to how one
interracts with them in git. You can switch the protocol used after the initial clone. However, it is
simpler to clone using the protocol that you prefer right from the start.

More initial setup is required to use ssh with git. The urls for cloning using ssh typically look
something like this

git@bitbucket.org/ksteimel/test_project.git

Let's break this down really quick. The beginning git@ part says that this ssh protocol is actually

Cloning a Repository

To clone a repository

SSH

using the git user on the server. In order for this to work, the server needs to have a preshared key
from our local machine.

To generate this key and put it on the server, follow the following instructions on a mac or linux
machine:

1. Check to see if there is a file in ~/.ssh/ that ends in .pub . The default file is normally
called id_rsa.pub on most modern systems.

2. If this file does exist, and you know the password associated with this key, simply open
the file in your favorite text editor, copy the content to your clipboard and paste the
contents into a new key in the web interface to the git server. Creating a new key is
usually done by accessing your user settings (by clicking on your user icon and then
clicking 'Settings') and then going to the submenu dealing with SSH & GPG keys.

3. If this file does not exist, create the file
1. Run the command ssh-keygen on your local machine as the user you would like

to use for this repo.
2. This program will prompt you for the location where you would like to store the

keys as well as the password for the keys. Typically, I leave these both at their
defaults on OpenSuse which is ~/.ssh/id_rsa.pub for the location and nothing
for the password.

3. If you have a different key location/name, you will need to add some content to
your ssh config file. In ~/.ssh/config put the following:

4. Never upload your private key. This will not work and it will also leave your
system exposed. Private keys are to be guarded closely, public keys are to share
around.

Host github.com

IdentityFile <path to identify file>

User git

4. After the public key file has been created, you should add this public key to the git
server's web management system using the instructions in 2

To use https, simply select the https url option when cloning. There is no additional setup required.
However, every time you push or pull, you will have to enter your username and password. If you
use the credential helper, this can allow you to avoid this annoyance. To do this, run the following
git config credential.helper store . You should only be prompted for your username and

password one more time and then git should remember. If you need to change your credentials for
any reason, just rerun that command and then you'll be prompted for credentials the next time
you pull.

HTTPS

This is an excellent alias for git hist to add to your .gitconfig file

This page has an excellent discussion of how to add this alias to your .gitconfig file. This website is
also the source of this handy alias.

The result is a description of the repository's history with color charts showing the different
branches. It's all done in the terminal too!

This is an example of what the hist command produces.

Git hist

git log --pretty=format:"%h %ad | %s%d [%an]" --graph --date=short

https://githowto.com/aliases

The Guided Git Tutorial is an invaluable resource for learning how to effectively use git. This
chapter is simliar and draws from this tutorial in many ways. However, the focus here is to provide
a more step by step explanation of how to use the pieces of git that are important for
computational linguists to know how to use.

Yue Chen and I have also prepared other materials to assist with learning git as well. Namely the
presentation in the sidebar of this page. In addition, I have a git repository that walks you through
many of the topics discussed in this chapter.

Introduction

https://githowto.com/
https://github.com/ksteimel/SentimentBench

One of the most powerful functionalities provided by git is the checkout functionality.

This command can be used to do a number of different things including:

Creating a new branch
Switching to a different branch
Updating the working tree
Moving to a different commit on the current branch
Creating a new branch at a previous commit point

I'll go over each of these functionalities and provide a use case for them as well.

This can be useful if there are multiple people working on a project where there are subgroups in
the project that are working on different parameter settings or different feature extraction
methods. Rather than create two different directories where the files live, you can create two
separate branches and use the checkout command to switch between them.

To create a new branch use the following syntax

Now that this new branch is created though, how do you quickly switch back and forth between
them? The answer is to essentially leave out the -b flag.

Checkout

Creating a new branch

git checkout -b <new branch name>

Switching to a different branch

The most common case where I use this functionality is to get back a file that I accidentally
deleted from my file system. Running git checkout <file path> will bring the latest version of that
file into your repo, even if that file has been deleted by mistake.

If there's a previous commit that you would like to roll back to, for example, if you need to
examine the previous way that some system was running, you can checkout an individual commit
from the past. To do this, you will need to obtain the shortened hexidecimal commit hash. One
way to obtain this is using the git log command. I recommend using the git hist alias
discussed elsewhere in this chapter.

Another way is to look at the repository in the git web interface on the server where your
repository is hosted. There will typically be a place to view the commit history on these web
interfaces. Then you can copy the commit code and paste it into the appropriate spot in your
command line.

For example,

Where 79b47a4 is an example commit code.

git checkout <target branch name>

Updating the working tree

Moving to a different commit on the
current branch

git checkout 79b47a4

Creating a new branch at the previous
commit point

However, the previous command will put your local repository into a detached head state. You can
do most git things but you are not currently on a branch terminal so some operations like merging
will not work. The solution is to create a new branch when you rewind to a previous commit. This
essentially combines the methods from two of the previous sections. Simply run

git checkout -b <new branch name> <commit hash>

