
I'm developing a parser for the L203 classes that can be fed rules

Design specs
Gameplan (in order of priority)
Handling Optionality
Hai's notes
Genie tidbits

Parser Utility

If generate is selected, the lexical entries and syntactic rules are used to generate a number of
random sentences in the bottom left box. If parse is selected, the sentence/sentences in the
bottom left box are parsed using the rules specified and the resulting svg is put in the box on the
right. Depth limit is used to prevent recursion from causing problems in the parse generated.

There was also a timeout so that if it took too long to parse the sentence, it was just aborted.

The rules input could be of two types, lexical rules and syntactic rules.

Design specs

Original Page Layout

Rule format

These rules consist of a lexical category label, a colon and then a thing that is part of that category.

for example N : dog

in addition, a set can be specified

N : {dog, cat}

this means that both dog and cat are N 's.

These rules consist of a syntactic category label, an arrow and then component constituents.

Should be able to handle

Optionality using parenthesis
Repetition using *
Right hand sides should be able to be non-binary

Lexical rules

Syntactic rules

NP -> Det N

Scope of rules

Intake of rules
Transformation of non-binary rules into binary rules
Generation of new rules using optionality
Generation of new rules using *

Earley parser
Transformation of binarized tree into non-binarized tree

Take in a tree object and generate svg using Luxor.jl
Create a tree creation website using svg generation

This will provide practice building MVC in Genie.jl and generation of trees

Generate random sentences using phrase structure rules

Gameplan (in order of
priority)

Utilities

Sentence parsing

Tree generation

Sentence generation

Implement length cutoff in case of recursive rules

The issue is that the optional pieces are occurring in rules of any length. E.g. we could have NP ->
(D)(Adj)(Mod)N

The possible options for this are:

NP -> D Adj Mod N
NP -> D Adj N
NP -> D Mod N
NP -> D N
NP -> Adj Mod N
NP -> Adj N
NP -> Mod N
NP -> N

This can be seen as using a negated mask over the optional elements with the non-optional
elements interpolated

NP -> D Adj Mod N (000)
NP -> D Adj N (001)
NP -> D Mod N (010)
NP -> D N (011)
NP -> Adj Mod N (100)
NP -> Adj N (101)
NP -> Mod N (110)
NP -> N (111)

if the bit at position n in the list of optionals is 1, then that position is removed.

Handling Optionality

1. upper limit for num of generations:

S -> NP VP NP:{John, Mary} VP:{eat, sleep}

when I ask it to generate 20 sentences, it generates many duplicates. Of course this simple
grammar can only have 4 distinctive sentences. Do we want to allow duplicates? Or maybe set a
parameter whether duplicates are allowed.

2. it doesn't seem to handle Chinese:

same small grammar but in Chinese:

S -> NP VP NP:{张三, 李四} VP:{吃饭, 睡觉}

will results in:

image.png

3. empty lines are not allowed? Any grammar with empty lines will give an error. I think we
may want to allow empty lines?

I have fixed 1 & 2 mostly. Some small changes need to be made to CFG.jl to use a font that allows
for more non-ascii characters like chinese characters.

3 is not resolved at the moment.

Hai's notes

css ane other frontend assets should be modfiied in the public folder not the assets/css folder.

Genie tidbits

