Irony/Sarcasm detection
Irony/Sarcasm Detection
This is an irony/sarcasm detection project working with the tweets I collected earlier this year. This will be my second qualifying exam submission.
Methods for building twitter-specific sentiment lexicon
Using mutual information
This page has quite a bit of information regarding how the mutual information should be computed. I don't think there is any difference between multi-class mutual information and binary mutual information except that the entropy of the class labels is affected.
Using Counts
I could use a simple method based upon counts of occurances of words both in the negative and in the positive tweets with normalization for frequency of terms
Using Feature Selection Methods
Mutual Information
The issue with using mutual information for this is that, ideally, we would want a two tailed statistical test, while mutual information is a one tailed test. To fix this, there are two different strategies that I am going to try.
Winner take all Mutual-Information
The winner take all mutual-information is the mutual information calculated for the positive class and the negative class, taking the larger of these two (negative mutual information will be multiplied by -1 to create a two tailed distribution of scores).
Proportional Mutual-Information
In proportional mutual information, the mutual information for the negative class si subtracted from the mutual information for the positive class.
Comparison of two-side MI
As mentioned in Methods for building twitter-specific sentiment lexicon there are two general ways that I tried to build a twitter specific sentiment lexicon. The first was to calculate the mutual information associated with the positive class and subtract from that the mutual information associated with the negative class. The other option was to take whichever had the higher value as the mutual information score, multiplying the negative class by -1.
However, upon inspection of the results, the winner-take-all method is producing a much more sensible list of vocabulary.
The raw files can be found here
Binary-Based
Count-Based
Determining a cutoff
There is some imbalance in how many terms are given higher mutual information for the positive class and the negative class.
For example, the 0 value for the winner take all binary setup occurs about two thirds of the way through. This imbalance would be problematic if all words were used to compute shifts in sentiment for the sarcasm detection part. The best solution seems to be to make the threshold some number of words from the ends (e.g. we're usign a ranking scheme to determine which words are associated strongly enough with each class to be representatives of that class).
My next steps are to determine how much overlap with the content of the sarcasm dataset there is.
Adding a minimum count cutoff
Commit 27dd9e4300 adds a cutoff to how low in frequency a given token can occur in order to be considered in the mutual information calculations. The entry is still present in the results array in the program, the mutual information is just automatically set to 0 if there are less than x
instances of a feature.
Currently the behavior is not special for counts. E.g. when a binary feature matrix has been computed, the minimum cutoff is effectively how many tweets it occured in, The counts do not try to emulate this and instead just count the frequency of usage including multiple usages in a single tweet.
Results dump
Cross validation character n-grams tfidf
F1-score Task A 0.6440953412784399
precision recall f1-score support
0 0.64831953 0.69214769 0.66951710 1923
1 0.66760247 0.62218734 0.64409534 1911
micro avg 0.65727700 0.65727700 0.65727700 3834
macro avg 0.65796100 0.65716751 0.65680622 3834
weighted avg 0.65793082 0.65727700 0.65684601 3834
Embeddings with averages
F1-score Task A 0.5545722713864307
precision recall f1-score support
0 0.70503597 0.62156448 0.66067416 473
1 0.51226158 0.60450161 0.55457227 311
micro avg 0.61479592 0.61479592 0.61479592 784
macro avg 0.60864878 0.61303304 0.60762321 784
weighted avg 0.62856552 0.61479592 0.61858527 784
Embeddings with sums
F1-score Task A 0.3297644539614561
precision recall f1-score support
0 0.62738854 0.83298097 0.71571299 473
1 0.49358974 0.24758842 0.32976445 311
micro avg 0.60076531 0.60076531 0.60076531 784
macro avg 0.56048914 0.54028470 0.52273872 784
weighted avg 0.57431274 0.60076531 0.56261351 784
Trial data character n-grams tfidf
{'classify__C': 100, 'classify__gamma': 'scale', 'reduce_dim__k': 10000}
F1-score Task A 0.6191198786039454
precision recall f1-score support
0 0.75458716 0.69556025 0.72387239 473
1 0.58620690 0.65594855 0.61911988 311
micro avg 0.67984694 0.67984694 0.67984694 784
macro avg 0.67039703 0.67575440 0.67149613 784
weighted avg 0.68779346 0.67984694 0.68231878 784
Trial data character n-grams with cheating to match skew in test data
Best parameters:
{'classify__C': 100, 'classify__class_weight': {0: 0.75, 1: 1.5}, 'classify__gamma': 'scale', 'reduce_dim__k': 10000}
F1-score Task A 0.6388206388206388
precision recall f1-score support
0 0.81850534 0.48625793 0.61007958 473
1 0.51689861 0.83601286 0.63882064 311
micro avg 0.62500000 0.62500000 0.62500000 784
macro avg 0.66770197 0.66113539 0.62445011 784
weighted avg 0.69886287 0.62500000 0.62148069 784
Trial data character n-grams mpqa skew in test data
MI
Fitting 5 folds for each of 5 candidates, totalling 25 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 16 concurrent workers.
[Parallel(n_jobs=-1)]: Done 20 out of 25 | elapsed: 14.3s remaining: 3.6s
[Parallel(n_jobs=-1)]: Done 25 out of 25 | elapsed: 14.4s finished
Grid scores on training set:
'precision', 'predicted', average, warn_for)
precision recall f1-score support
0 0.00000000 0.00000000 0.00000000 473
1 0.39668367 1.00000000 0.56803653 311
micro avg 0.39668367 0.39668367 0.39668367 784
macro avg 0.19834184 0.50000000 0.28401826 784
weighted avg 0.15735794 0.39668367 0.22533082 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6067415730337078
precision recall f1-score support
0 0.87931034 0.21564482 0.34634975 473
1 0.44461078 0.95498392 0.60674157 311
micro avg 0.50892857 0.50892857 0.50892857 784
macro avg 0.66196056 0.58531437 0.47654566 784
weighted avg 0.70687212 0.50892857 0.44964293 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6211180124223602
precision recall f1-score support
0 0.91472868 0.24947146 0.39202658 473
1 0.45801527 0.96463023 0.62111801 311
micro avg 0.53316327 0.53316327 0.53316327 784
macro avg 0.68637197 0.60705084 0.50657230 784
weighted avg 0.73355793 0.53316327 0.48290341 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6282722513089005
precision recall f1-score support
0 0.92142857 0.27272727 0.42088091 473
1 0.46583851 0.96463023 0.62827225 311
micro avg 0.54719388 0.54719388 0.54719388 784
macro avg 0.69363354 0.61867875 0.52457658 784
weighted avg 0.74070343 0.54719388 0.50314967 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6251319957761351
precision recall f1-score support
0 0.89864865 0.28118393 0.42834138 473
1 0.46540881 0.95176849 0.62513200 311
micro avg 0.54719388 0.54719388 0.54719388 784
macro avg 0.68202873 0.61647621 0.52673669 784
weighted avg 0.72678948 0.54719388 0.50640501 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6272439281942978
precision recall f1-score support
0 0.90540541 0.28329810 0.43156200 473
1 0.46698113 0.95498392 0.62724393 311
micro avg 0.54974490 0.54974490 0.54974490 784
macro avg 0.68619327 0.61914101 0.52940296 784
weighted avg 0.73148965 0.54974490 0.50918582 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6314677930306231
precision recall f1-score support
0 0.91891892 0.28752643 0.43800322 473
1 0.47012579 0.96141479 0.63146779 311
micro avg 0.55484694 0.55484694 0.55484694 784
macro avg 0.69452235 0.62447061 0.53473551 784
weighted avg 0.74089001 0.55484694 0.51474746 784
Chi2
Grid scores on training set:
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.5821596244131456
precision recall f1-score support
0 0.96666667 0.06131078 0.11530815 473
1 0.41114058 0.99678457 0.58215962 311
micro avg 0.43239796 0.43239796 0.43239796 784
macro avg 0.68890363 0.52904767 0.34873389 784
weighted avg 0.74629854 0.43239796 0.30050051 784
Best parameters:
{'C': 10, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.5944881889763779
precision recall f1-score support
0 0.88607595 0.14799154 0.25362319 473
1 0.42836879 0.97106109 0.59448819 311
micro avg 0.47448980 0.47448980 0.47448980 784
macro avg 0.65722237 0.55952632 0.42405569 784
weighted avg 0.70451099 0.47448980 0.38883877 784
Best parameters:
{'C': 10, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.59765625
precision recall f1-score support
0 0.92957746 0.13953488 0.24264706 473
1 0.42917251 0.98392283 0.59765625 311
micro avg 0.47448980 0.47448980 0.47448980 784
macro avg 0.67937499 0.56172886 0.42015165 784
weighted avg 0.73107499 0.47448980 0.38347341 784
Best parameters:
{'C': 10, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.5996093750000001
precision recall f1-score support
0 0.94366197 0.14164905 0.24632353 473
1 0.43057504 0.98713826 0.59960938 311
micro avg 0.47704082 0.47704082 0.47704082 784
macro avg 0.68711850 0.56439366 0.42296645 784
weighted avg 0.74012876 0.47704082 0.38646626 784
Best parameters:
{'C': 10, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.5974781765276431
precision recall f1-score support
0 0.95312500 0.12896406 0.22718808 473
1 0.42777778 0.99035370 0.59747818 311
micro avg 0.47066327 0.47066327 0.47066327 784
macro avg 0.69045139 0.55965888 0.41233313 784
weighted avg 0.74472833 0.47066327 0.37407612 784
Best parameters:
{'C': 10, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.5926640926640927
precision recall f1-score support
0 0.93220339 0.11627907 0.20676692 473
1 0.42344828 0.98713826 0.59266409 311
micro avg 0.46173469 0.46173469 0.46173469 784
macro avg 0.67782583 0.55170867 0.39971550 784
weighted avg 0.73038854 0.46173469 0.35984603 784
Best parameters:
{'C': 100, 'class_weight': {0: 0.7, 1: 1.5}, 'gamma': 'scale'}
F1-score Task A 0.6337854500616523
precision recall f1-score support
0 0.80985915 0.48625793 0.60766182 473
1 0.51400000 0.82636656 0.63378545 311
micro avg 0.62117347 0.62117347 0.62117347 784
macro avg 0.66192958 0.65631224 0.62072364 784
weighted avg 0.69249666 0.62117347 0.61802464 784
Sentiment feats alone
precision recall f1-score support
0 0.63468635 0.36363636 0.46236559 473
1 0.41325536 0.68167203 0.51456311 311
micro avg 0.48979592 0.48979592 0.48979592 784
macro avg 0.52397085 0.52265419 0.48846435 784
weighted avg 0.54684829 0.48979592 0.48307149 784
MPQA Sentiment feats + BoW
MI
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.5987421383647799
precision recall f1-score support
0 0.75666667 0.47991543 0.58732212 473
1 0.49173554 0.76527331 0.59874214 311
micro avg 0.59311224 0.59311224 0.59311224 784
macro avg 0.62420110 0.62259437 0.59303213 784
weighted avg 0.65157281 0.59311224 0.59185226 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6122905027932961
precision recall f1-score support
0 0.81500000 0.34460888 0.48439822 473
1 0.46917808 0.88102894 0.61229050 311
micro avg 0.55739796 0.55739796 0.55739796 784
macro avg 0.64208904 0.61281891 0.54834436 784
weighted avg 0.67781809 0.55739796 0.53513100 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6160714285714285
precision recall f1-score support
0 0.82412060 0.34672304 0.48809524 473
1 0.47179487 0.88745981 0.61607143 311
micro avg 0.56122449 0.56122449 0.56122449 784
macro avg 0.64795774 0.61709143 0.55208333 784
weighted avg 0.68435874 0.56122449 0.53886130 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6155555555555555
precision recall f1-score support
0 0.82564103 0.34038055 0.48203593 473
1 0.47028862 0.89067524 0.61555556 311
micro avg 0.55867347 0.55867347 0.55867347 784
macro avg 0.64796483 0.61552790 0.54879574 784
weighted avg 0.68467853 0.55867347 0.53500098 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6145374449339207
precision recall f1-score support
0 0.82887701 0.32769556 0.46969697 473
1 0.46733668 0.89710611 0.61453744 311
micro avg 0.55357143 0.55357143 0.55357143 784
macro avg 0.64810684 0.61240083 0.54211721 784
weighted avg 0.68545986 0.55357143 0.52715282 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6106870229007634
precision recall f1-score support
0 0.82584270 0.31078224 0.45161290 473
1 0.46204620 0.90032154 0.61068702 311
micro avg 0.54464286 0.54464286 0.54464286 784
macro avg 0.64394445 0.60555189 0.53114996 784
weighted avg 0.68153057 0.54464286 0.51471501 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6352941176470589
precision recall f1-score support
0 0.79393939 0.55391121 0.65255293 473
1 0.53524229 0.78135048 0.63529412 311
micro avg 0.64413265 0.64413265 0.64413265 784
macro avg 0.66459084 0.66763084 0.64392352 784
weighted avg 0.69131848 0.64413265 0.64570664 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.639386189258312
precision recall f1-score support
0 0.80511182 0.53276956 0.64122137 473
1 0.53078556 0.80385852 0.63938619 311
micro avg 0.64030612 0.64030612 0.64030612 784
macro avg 0.66794869 0.66831404 0.64030378 784
weighted avg 0.69629107 0.64030612 0.64049339 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.645
precision recall f1-score support
0 0.82033898 0.51162791 0.63020833 473
1 0.52760736 0.82958199 0.64500000 311
micro avg 0.63775510 0.63775510 0.63775510 784
macro avg 0.67397317 0.67060495 0.63760417 784
weighted avg 0.70421713 0.63775510 0.63607595 784
Chi2
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6114352392065344
precision recall f1-score support
0 0.79411765 0.39957717 0.53164557 473
1 0.47985348 0.84244373 0.61143524 311
micro avg 0.57525510 0.57525510 0.57525510 784
macro avg 0.63698556 0.62101045 0.57154040 784
weighted avg 0.66945418 0.57525510 0.56329683 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6084425036390102
precision recall f1-score support
0 0.75000000 0.64693446 0.69466515 473
1 0.55585106 0.67202572 0.60844250 311
micro avg 0.65688776 0.65688776 0.65688776 784
macro avg 0.65292553 0.65948009 0.65155383 784
weighted avg 0.67298429 0.65688776 0.66046204 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5892857142857142
precision recall f1-score support
0 0.73286052 0.65539112 0.69196429 473
1 0.54847645 0.63665595 0.58928571 311
micro avg 0.64795918 0.64795918 0.64795918 784
macro avg 0.64066849 0.64602353 0.64062500 784
weighted avg 0.65971837 0.64795918 0.65123337 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5991058122205664
precision recall f1-score support
0 0.74056604 0.66384778 0.70011148 473
1 0.55833333 0.64630225 0.59910581 311
micro avg 0.65688776 0.65688776 0.65688776 784
macro avg 0.64944969 0.65507502 0.64960865 784
weighted avg 0.66827730 0.65688776 0.66004418 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6240928882438316
precision recall f1-score support
0 0.76354680 0.65539112 0.70534699 473
1 0.56878307 0.69131833 0.62409289 311
micro avg 0.66964286 0.66964286 0.66964286 784
macro avg 0.66616493 0.67335472 0.66471994 784
weighted avg 0.68628721 0.66964286 0.67311481 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6195965417867435
precision recall f1-score support
0 0.76059850 0.64482030 0.69794050 473
1 0.56135770 0.69131833 0.61959654 311
micro avg 0.66326531 0.66326531 0.66326531 784
macro avg 0.66097810 0.66806931 0.65876852 784
weighted avg 0.68156293 0.66326531 0.66686273 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6218978102189782
precision recall f1-score support
0 0.76097561 0.65961945 0.70668177 473
1 0.56951872 0.68488746 0.62189781 311
micro avg 0.66964286 0.66964286 0.66964286 784
macro avg 0.66524716 0.67225346 0.66428979 784
weighted avg 0.68502779 0.66964286 0.67304936 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6440677966101694
precision recall f1-score support
0 0.80487805 0.55813953 0.65917603 473
1 0.54166667 0.79421222 0.64406780 311
micro avg 0.65178571 0.65178571 0.65178571 784
macro avg 0.67327236 0.67617588 0.65162191 784
weighted avg 0.70046639 0.65178571 0.65318284 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.644918444165621
precision recall f1-score support
0 0.81879195 0.51585624 0.63294423 473
1 0.52880658 0.82636656 0.64491844 311
micro avg 0.63903061 0.63903061 0.63903061 784
macro avg 0.67379927 0.67111140 0.63893134 784
weighted avg 0.70375949 0.63903061 0.63769420 784
CoreNLP Sentiment feats + BOW
MI
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5388127853881278
precision recall f1-score support
0 0.69406393 0.64270613 0.66739846 473
1 0.51156069 0.56913183 0.53881279 311
micro avg 0.61352041 0.61352041 0.61352041 784
macro avg 0.60281231 0.60591898 0.60310562 784
weighted avg 0.62166787 0.61352041 0.61639062 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5680119581464873
precision recall f1-score support
0 0.71596244 0.64482030 0.67853170 473
1 0.53072626 0.61093248 0.56801196 311
micro avg 0.63137755 0.63137755 0.63137755 784
macro avg 0.62334435 0.62787639 0.62327183 784
weighted avg 0.64248227 0.63137755 0.63469032 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5727272727272729
precision recall f1-score support
0 0.71954023 0.66173362 0.68942731 473
1 0.54154728 0.60771704 0.57272727 311
micro avg 0.64030612 0.64030612 0.64030612 784
macro avg 0.63054375 0.63472533 0.63107729 784
weighted avg 0.64893333 0.64030612 0.64313431 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6156111929307806
precision recall f1-score support
0 0.75480769 0.66384778 0.70641170 473
1 0.56793478 0.67202572 0.61561119 311
micro avg 0.66709184 0.66709184 0.66709184 784
macro avg 0.66137124 0.66793675 0.66101145 784
weighted avg 0.68067826 0.66709184 0.67039262 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6056971514242879
precision recall f1-score support
0 0.74532710 0.67441860 0.70810211 473
1 0.56741573 0.64951768 0.60569715 311
micro avg 0.66454082 0.66454082 0.66454082 784
macro avg 0.65637142 0.66196814 0.65689963 784
weighted avg 0.67475257 0.66454082 0.66747973 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6217008797653958
precision recall f1-score support
0 0.76029056 0.66384778 0.70880361 473
1 0.57142857 0.68167203 0.62170088 311
micro avg 0.67091837 0.67091837 0.67091837 784
macro avg 0.66585956 0.67275990 0.66525225 784
weighted avg 0.68537209 0.67091837 0.67425138 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6133333333333333
precision recall f1-score support
0 0.75238095 0.66807611 0.70772676 473
1 0.56868132 0.66559486 0.61333333 311
micro avg 0.66709184 0.66709184 0.66709184 784
macro avg 0.66053114 0.66683548 0.66053005 784
weighted avg 0.67951031 0.66709184 0.67028243 784
F1-score Task A 0.6105263157894737
precision recall f1-score support
0 0.74883721 0.68076110 0.71317829 473
1 0.57344633 0.65273312 0.61052632 311
micro avg 0.66964286 0.66964286 0.66964286 784
macro avg 0.66114177 0.66674711 0.66185231 784
weighted avg 0.67926251 0.66964286 0.67245793 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6240713224368498
precision recall f1-score support
0 0.76066351 0.67864693 0.71731844 473
1 0.58011050 0.67524116 0.62407132 311
micro avg 0.67729592 0.67729592 0.67729592 784
macro avg 0.67038700 0.67694405 0.67069488 784
weighted avg 0.68904108 0.67729592 0.68032883 784
Chi2
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5799457994579946
precision recall f1-score support
0 0.72829132 0.54968288 0.62650602 473
1 0.50117096 0.68810289 0.57994580 311
micro avg 0.60459184 0.60459184 0.60459184 784
macro avg 0.61473114 0.61889288 0.60322591 784
weighted avg 0.63819638 0.60459184 0.60803634 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5900151285930408
precision recall f1-score support
0 0.73271889 0.67230444 0.70121279 473
1 0.55714286 0.62700965 0.59001513 311
micro avg 0.65433673 0.65433673 0.65433673 784
macro avg 0.64493088 0.64965704 0.64561396 784
weighted avg 0.66307075 0.65433673 0.65710249 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6184012066365008
precision recall f1-score support
0 0.75462963 0.68921776 0.72044199 473
1 0.58238636 0.65916399 0.61840121 311
micro avg 0.67729592 0.67729592 0.67729592 784
macro avg 0.66850800 0.67419087 0.66942160 784
weighted avg 0.68630354 0.67729592 0.67996408 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5988023952095808
precision recall f1-score support
0 0.74004684 0.66807611 0.70222222 473
1 0.56022409 0.64308682 0.59880240 311
micro avg 0.65816327 0.65816327 0.65816327 784
macro avg 0.65013546 0.65558146 0.65051231 784
weighted avg 0.66871409 0.65816327 0.66119727 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6133333333333333
precision recall f1-score support
0 0.75238095 0.66807611 0.70772676 473
1 0.56868132 0.66559486 0.61333333 311
micro avg 0.66709184 0.66709184 0.66709184 784
macro avg 0.66053114 0.66683548 0.66053005 784
weighted avg 0.67951031 0.66709184 0.67028243 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6332842415316642
precision recall f1-score support
0 0.76923077 0.67653277 0.71991001 473
1 0.58423913 0.69131833 0.63328424 311
micro avg 0.68239796 0.68239796 0.68239796 784
macro avg 0.67673495 0.68392555 0.67659713 784
weighted avg 0.69584761 0.68239796 0.68554698 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6117647058823529
precision recall f1-score support
0 0.75180723 0.65961945 0.70270270 473
1 0.56368564 0.66881029 0.61176471 311
micro avg 0.66326531 0.66326531 0.66326531 784
macro avg 0.65774643 0.66421487 0.65723370 784
weighted avg 0.67718246 0.66326531 0.66662908 784
F1-score Task A 0.6172106824925816
precision recall f1-score support
0 0.75534442 0.67230444 0.71140940 473
1 0.57300275 0.66881029 0.61721068 311
micro avg 0.67091837 0.67091837 0.67091837 784
macro avg 0.66417359 0.67055736 0.66431004 784
weighted avg 0.68301246 0.67091837 0.67404230 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6140089418777943
precision recall f1-score support
0 0.75235849 0.67441860 0.71125975 473
1 0.57222222 0.66237942 0.61400894 311
micro avg 0.66964286 0.66964286 0.66964286 784
macro avg 0.66229036 0.66839901 0.66263435 784
weighted avg 0.68090137 0.66964286 0.67268195 784
Twitter Sentiment feats + BOW
Mutual Information
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.5710186513629842
precision recall f1-score support
0 0.71859296 0.60465116 0.65671642 473
1 0.51554404 0.63987138 0.57101865 311
micro avg 0.61862245 0.61862245 0.61862245 784
macro avg 0.61706850 0.62226127 0.61386753 784
weighted avg 0.63804677 0.61862245 0.62272151 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.5918653576437587
precision recall f1-score support
0 0.73821990 0.59619450 0.65964912 473
1 0.52487562 0.67845659 0.59186536 311
micro avg 0.62882653 0.62882653 0.62882653 784
macro avg 0.63154776 0.63732555 0.62575724 784
weighted avg 0.65358971 0.62882653 0.63276041 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.5963431786216595
precision recall f1-score support
0 0.74218750 0.60253700 0.66511085 473
1 0.53000000 0.68167203 0.59634318 311
micro avg 0.63392857 0.63392857 0.63392857 784
macro avg 0.63609375 0.64210451 0.63072702 784
weighted avg 0.65801618 0.63392857 0.63783184 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6134800550206327
precision recall f1-score support
0 0.76086957 0.59196617 0.66587396 473
1 0.53605769 0.71704180 0.61348006 311
micro avg 0.64158163 0.64158163 0.64158163 784
macro avg 0.64846363 0.65450399 0.63967701 784
weighted avg 0.67169037 0.64158163 0.64509015 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6253443526170799
precision recall f1-score support
0 0.77235772 0.60253700 0.67695962 473
1 0.54698795 0.72990354 0.62534435 311
micro avg 0.65306122 0.65306122 0.65306122 784
macro avg 0.65967284 0.66622027 0.65115199 784
weighted avg 0.68295721 0.65306122 0.65648469 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6233062330623307
precision recall f1-score support
0 0.77310924 0.58350951 0.66506024 473
1 0.53864169 0.73954984 0.62330623 311
micro avg 0.64540816 0.64540816 0.64540816 784
macro avg 0.65587546 0.66152968 0.64418324 784
weighted avg 0.68009979 0.64540816 0.64849711 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6228187919463087
precision recall f1-score support
0 0.77428571 0.57293869 0.65856622 473
1 0.53456221 0.74598071 0.62281879 311
micro avg 0.64158163 0.64158163 0.64158163 784
macro avg 0.65442396 0.65945970 0.64069251 784
weighted avg 0.67919131 0.64158163 0.64438580 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6251655629139073
precision recall f1-score support
0 0.77941176 0.56025370 0.65190652 473
1 0.53153153 0.75884244 0.62516556 311
micro avg 0.63903061 0.63903061 0.63903061 784
macro avg 0.65547165 0.65954807 0.63853604 784
weighted avg 0.68108172 0.63903061 0.64129882 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6276041666666666
precision recall f1-score support
0 0.78593272 0.54334038 0.64250000 473
1 0.52735230 0.77491961 0.62760417 311
micro avg 0.63520408 0.63520408 0.63520408 784
macro avg 0.65664251 0.65913000 0.63505208 784
weighted avg 0.68335809 0.63520408 0.63659107 784
Chi-squared
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6
precision recall f1-score support
0 0.76140351 0.45877378 0.57255937 473
1 0.48697395 0.78135048 0.60000000 311
micro avg 0.58673469 0.58673469 0.58673469 784
macro avg 0.62418873 0.62006213 0.58627968 784
weighted avg 0.65254178 0.58673469 0.58344462 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5842349304482226
precision recall f1-score support
0 0.72767857 0.68921776 0.70792617 473
1 0.56250000 0.60771704 0.58423493 311
micro avg 0.65688776 0.65688776 0.65688776 784
macro avg 0.64508929 0.64846740 0.64608055 784
weighted avg 0.66215493 0.65688776 0.65885987 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6183431952662721
precision recall f1-score support
0 0.75656325 0.67019027 0.71076233 473
1 0.57260274 0.67202572 0.61834320 311
micro avg 0.67091837 0.67091837 0.67091837 784
macro avg 0.66458299 0.67110800 0.66455276 784
weighted avg 0.68358912 0.67091837 0.67410117 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.623688155922039
precision recall f1-score support
0 0.75934579 0.68710359 0.72142064 473
1 0.58426966 0.66881029 0.62368816 311
micro avg 0.67984694 0.67984694 0.67984694 784
macro avg 0.67180773 0.67795694 0.67255440 784
weighted avg 0.68989595 0.67984694 0.68265176 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.624813153961136
precision recall f1-score support
0 0.76056338 0.68498943 0.72080089 473
1 0.58379888 0.67202572 0.62481315 311
micro avg 0.67984694 0.67984694 0.67984694 784
macro avg 0.67218113 0.67850758 0.67280702 784
weighted avg 0.69044379 0.67984694 0.68272412 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6340740740740741
precision recall f1-score support
0 0.76904762 0.68287526 0.72340426 473
1 0.58791209 0.68810289 0.63407407 311
micro avg 0.68494898 0.68494898 0.68494898 784
macro avg 0.67847985 0.68548908 0.67873916 784
weighted avg 0.69719411 0.68494898 0.68796843 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.609720176730486
precision recall f1-score support
0 0.75000000 0.65961945 0.70191226 473
1 0.56250000 0.66559486 0.60972018 311
micro avg 0.66198980 0.66198980 0.66198980 784
macro avg 0.65625000 0.66260715 0.65581622 784
weighted avg 0.67562181 0.66198980 0.66534117 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6244477172312224
precision recall f1-score support
0 0.76201923 0.67019027 0.71316085 473
1 0.57608696 0.68167203 0.62444772 311
micro avg 0.67474490 0.67474490 0.67474490 784
macro avg 0.66905309 0.67593115 0.66880429 784
weighted avg 0.68826293 0.67474490 0.67796980 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6311688311688313
precision recall f1-score support
0 0.79076923 0.54334038 0.64411028 473
1 0.52941176 0.78135048 0.63116883 311
micro avg 0.63775510 0.63775510 0.63775510 784
macro avg 0.66009050 0.66234543 0.63763955 784
weighted avg 0.68709299 0.63775510 0.63897662 784
Bow alone
Mutual Information
Best parameters:
{'C': 0.01, 'gamma': 'scale'}
F1-score Task A 0.6146788990825688
precision recall f1-score support
0 0.80717489 0.38054968 0.51724138 473
1 0.47771836 0.86173633 0.61467890 311
micro avg 0.57142857 0.57142857 0.57142857 784
macro avg 0.64244662 0.62114301 0.56596014 784
weighted avg 0.67648486 0.57142857 0.55589325 784
Best parameters:
{'C': 0.1, 'gamma': 'scale'}
F1-score Task A 0.6074766355140188
precision recall f1-score support
0 0.78661088 0.39746300 0.52808989 473
1 0.47706422 0.83601286 0.60747664 311
micro avg 0.57142857 0.57142857 0.57142857 784
macro avg 0.63183755 0.61673793 0.56778326 784
weighted avg 0.66381877 0.57142857 0.55958131 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6084507042253521
precision recall f1-score support
0 0.75324675 0.61310782 0.67599068 473
1 0.54135338 0.69453376 0.60845070 311
micro avg 0.64540816 0.64540816 0.64540816 784
macro avg 0.64730007 0.65382079 0.64222069 784
weighted avg 0.66919211 0.64540816 0.64919867 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6022727272727273
precision recall f1-score support
0 0.74680307 0.61733615 0.67592593 473
1 0.53944020 0.68167203 0.60227273 311
micro avg 0.64285714 0.64285714 0.64285714 784
macro avg 0.64312164 0.64950409 0.63909933 784
weighted avg 0.66454561 0.64285714 0.64670890 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.5991316931982634
precision recall f1-score support
0 0.74257426 0.63424947 0.68415051 473
1 0.54473684 0.66559486 0.59913169 311
micro avg 0.64668367 0.64668367 0.64668367 784
macro avg 0.64365555 0.64992216 0.64164110 784
weighted avg 0.66409538 0.64668367 0.65042494 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6080691642651297
precision recall f1-score support
0 0.75062344 0.63636364 0.68878719 473
1 0.55091384 0.67845659 0.60806916 311
micro avg 0.65306122 0.65306122 0.65306122 784
macro avg 0.65076864 0.65741011 0.64842817 784
weighted avg 0.67140190 0.65306122 0.65676766 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6242038216560509
precision recall f1-score support
0 0.78709677 0.51585624 0.62324393 473
1 0.51687764 0.78778135 0.62420382 311
micro avg 0.62372449 0.62372449 0.62372449 784
macro avg 0.65198721 0.65181879 0.62372388 784
weighted avg 0.67990525 0.62372449 0.62362471 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6221662468513853
precision recall f1-score support
0 0.78737542 0.50105708 0.61240310 473
1 0.51138716 0.79421222 0.62216625 311
micro avg 0.61734694 0.61734694 0.61734694 784
macro avg 0.64938129 0.64763465 0.61728467 784
weighted avg 0.67789538 0.61734694 0.61627598 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6262376237623762
precision recall f1-score support
0 0.79790941 0.48414376 0.60263158 473
1 0.50905433 0.81350482 0.62623762 311
micro avg 0.61479592 0.61479592 0.61479592 784
macro avg 0.65348187 0.64882429 0.61443460 784
weighted avg 0.68332531 0.61479592 0.61199571 784
Chi2
Best parameters:
{'C': 0.1, 'gamma': 'scale'}
F1-score Task A 0.616822429906542
precision recall f1-score support
0 0.80334728 0.40591966 0.53932584 473
1 0.48440367 0.84887460 0.61682243 311
micro avg 0.58163265 0.58163265 0.58163265 784
macro avg 0.64387548 0.62739713 0.57807414 784
weighted avg 0.67682756 0.58163265 0.57006747 784
Best parameters:
{'C': 0.1, 'gamma': 'scale'}
F1-score Task A 0.6134259259259259
precision recall f1-score support
0 0.80086580 0.39112051 0.52556818 473
1 0.47920434 0.85209003 0.61342593 311
micro avg 0.57397959 0.57397959 0.57397959 784
macro avg 0.64003507 0.62160527 0.56949705 784
weighted avg 0.67326795 0.57397959 0.56041991 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6005830903790088
precision recall f1-score support
0 0.74327628 0.64270613 0.68934240 473
1 0.54933333 0.66237942 0.60058309 311
micro avg 0.65051020 0.65051020 0.65051020 784
macro avg 0.64630481 0.65254278 0.64496275 784
weighted avg 0.66634228 0.65051020 0.65413303 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6051873198847262
precision recall f1-score support
0 0.74812968 0.63424947 0.68649886 473
1 0.54830287 0.67524116 0.60518732 311
micro avg 0.65051020 0.65051020 0.65051020 784
macro avg 0.64821627 0.65474531 0.64584309 784
weighted avg 0.66886165 0.65051020 0.65424390 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.5979971387696709
precision recall f1-score support
0 0.74242424 0.62156448 0.67663982 473
1 0.53865979 0.67202572 0.59799714 311
micro avg 0.64158163 0.64158163 0.64158163 784
macro avg 0.64054202 0.64679510 0.63731848 784
weighted avg 0.66159421 0.64158163 0.64544355 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6189111747851003
precision recall f1-score support
0 0.76070529 0.63847780 0.69425287 473
1 0.55813953 0.69453376 0.61891117 311
micro avg 0.66071429 0.66071429 0.66071429 784
macro avg 0.65942241 0.66650578 0.65658202 784
weighted avg 0.68035076 0.66071429 0.66436605 784
Best parameters:
{'C': 10, 'gamma': 'scale'}
F1-score Task A 0.6221590909090909
precision recall f1-score support
0 0.76470588 0.63213531 0.69212963 473
1 0.55725191 0.70418006 0.62215909 311
micro avg 0.66071429 0.66071429 0.66071429 784
macro avg 0.66097890 0.66815769 0.65714436 784
weighted avg 0.68241228 0.66071429 0.66437346 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.628498727735369
precision recall f1-score support
0 0.79288026 0.51797040 0.62659847 473
1 0.52000000 0.79421222 0.62849873 311
micro avg 0.62755102 0.62755102 0.62755102 784
macro avg 0.65644013 0.65609131 0.62754860 784
weighted avg 0.68463312 0.62755102 0.62735227 784
Best parameters:
{'C': 1, 'gamma': 'scale'}
F1-score Task A 0.6236024844720497
precision recall f1-score support
0 0.79310345 0.48625793 0.60288336 473
1 0.50809717 0.80707395 0.62360248 311
micro avg 0.61352041 0.61352041 0.61352041 784
macro avg 0.65060031 0.64666594 0.61324292 784
weighted avg 0.68004611 0.61352041 0.61110230 784
Combined
Chi2
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5663716814159292
precision recall f1-score support
0 0.71462830 0.63002114 0.66966292 473
1 0.52316076 0.61736334 0.56637168 311
micro avg 0.62500000 0.62500000 0.62500000 784
macro avg 0.61889453 0.62369224 0.61801730 784
weighted avg 0.63867625 0.62500000 0.62868897 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5753012048192772
precision recall f1-score support
0 0.72157773 0.65750529 0.68805310 473
1 0.54107649 0.61414791 0.57530120 311
micro avg 0.64030612 0.64030612 0.64030612 784
macro avg 0.63132711 0.63582660 0.63167715 784
weighted avg 0.64997583 0.64030612 0.64332626 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5954198473282442
precision recall f1-score support
0 0.73636364 0.68498943 0.70974808 473
1 0.56686047 0.62700965 0.59541985 311
micro avg 0.66198980 0.66198980 0.66198980 784
macro avg 0.65161205 0.65599954 0.65258397 784
weighted avg 0.66912450 0.66198980 0.66439594 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.600609756097561
precision recall f1-score support
0 0.74031891 0.68710359 0.71271930 473
1 0.57101449 0.63344051 0.60060976 311
micro avg 0.66581633 0.66581633 0.66581633 784
macro avg 0.65566670 0.66027205 0.65666453 784
weighted avg 0.67315861 0.66581633 0.66824727 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6255639097744361
precision recall f1-score support
0 0.76046512 0.69133192 0.72425249 473
1 0.58757062 0.66881029 0.62556391 311
micro avg 0.68239796 0.68239796 0.68239796 784
macro avg 0.67401787 0.68007111 0.67490820 784
weighted avg 0.69188069 0.68239796 0.68510434 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6216216216216217
precision recall f1-score support
0 0.75757576 0.68710359 0.72062084 473
1 0.58309859 0.66559486 0.62162162 311
micro avg 0.67857143 0.67857143 0.67857143 784
macro avg 0.67033717 0.67634922 0.67112123 784
weighted avg 0.68836351 0.67857143 0.68134947 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6077844311377245
precision recall f1-score support
0 0.74707260 0.67441860 0.70888889 473
1 0.56862745 0.65273312 0.60778443 311
micro avg 0.66581633 0.66581633 0.66581633 784
macro avg 0.65785003 0.66357586 0.65833666 784
weighted avg 0.67628632 0.66581633 0.66878240 784
Mutual Information
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5601217656012177
precision recall f1-score support
0 0.71004566 0.65750529 0.68276619 473
1 0.53179191 0.59163987 0.56012177 311
micro avg 0.63137755 0.63137755 0.63137755 784
macro avg 0.62091878 0.62457258 0.62144398 784
weighted avg 0.63933531 0.63137755 0.63411515 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.5753424657534247
precision recall f1-score support
0 0.72146119 0.66807611 0.69374314 473
1 0.54624277 0.60771704 0.57534247 311
micro avg 0.64413265 0.64413265 0.64413265 784
macro avg 0.63385198 0.63789658 0.63454280 784
weighted avg 0.65195490 0.64413265 0.64677553 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.581039755351682
precision recall f1-score support
0 0.72562358 0.67653277 0.70021882 473
1 0.55393586 0.61093248 0.58103976 311
micro avg 0.65051020 0.65051020 0.65051020 784
macro avg 0.63977972 0.64373262 0.64062929 784
weighted avg 0.65751787 0.65051020 0.65294243 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6066066066066067
precision recall f1-score support
0 0.74592075 0.67653277 0.70953437 473
1 0.56901408 0.64951768 0.60660661 311
micro avg 0.66581633 0.66581633 0.66581633 784
macro avg 0.65746742 0.66302523 0.65807049 784
weighted avg 0.67574476 0.66581633 0.66870461 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6059701492537314
precision recall f1-score support
0 0.74588235 0.67019027 0.70601336 473
1 0.56545961 0.65273312 0.60597015 311
micro avg 0.66326531 0.66326531 0.66326531 784
macro avg 0.65567098 0.66146170 0.65599176 784
weighted avg 0.67431160 0.66326531 0.66632785 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.608955223880597
precision recall f1-score support
0 0.74823529 0.67230444 0.70824053 473
1 0.56824513 0.65594855 0.60895522 311
micro avg 0.66581633 0.66581633 0.66581633 784
macro avg 0.65824021 0.66412650 0.65859788 784
weighted avg 0.67683613 0.66581633 0.66885567 784
Best parameters:
{'C': 100, 'gamma': 'scale'}
F1-score Task A 0.6063348416289592
precision recall f1-score support
0 0.74537037 0.68076110 0.71160221 473
1 0.57102273 0.64630225 0.60633484 311
micro avg 0.66709184 0.66709184 0.66709184 784
macro avg 0.65819655 0.66353168 0.65896853 784
weighted avg 0.67620951 0.66709184 0.66984436 784
Todo: Coding
- Implement sentiment value creator with
fit()
andtransform()
. - Integrate corenlpSentimentAnalyzer code into
fit()
andtransform()
framework - Add FeatureUnion component to pipeline
- Dig up MPQA feature creation in git repo
- Implement MPQA estimator
Log
Fixed issue where the server would not work with the sentiment analysis annotator enabled by upgrading to corenlp v 3.9.2
F-score for positive class analysis
Bag of Words alone
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.61468 | 0.61682 |
500 | 0.60748 | 0.61343 |
1000 | 0.60845 | 0.60058 |
2000 | 0.60227 | 0.60519 |
3000 | 0.59913 | 0.59800 |
5000 | 0.60807 | 0.61891 |
10000 | 0.62420 | 0.62216 |
12000 | 0.62217 | 0.62850 |
15000 | 0.62624 | 0.62360 |
MPQA + BOW
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.598742 | 0.611435 |
500 | 0.612291 | 0.608443 |
1000 | 0.616071 | 0.5892857 |
2000 | 0.615556 | 0.5991058 |
3000 | 0.614537 | 0.6240929 |
5000 | 0.610687 | 0.6195965 |
10000 | 0.635294 | 0.6218978 |
12000 | 0.639386 | 0.6440678 |
15000 | 0.645 | 0.6449184 |
CoreNLP + BOW
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.538813 | 0.5799457 |
500 | 0.568012 | 0.5900151 |
1000 | 0.572727 | 0.6184012 |
2000 | 0.615611 | 0.5988024 |
3000 | 0.605697 | 0.6133333 |
5000 | 0.621701 | 0.6332842 |
10000 | 0.613333 | 0.6117647 |
12000 | 0.610526 | 0.6172106 |
15000 | 0.624071 | 0.6140089 |
Twitter Sentiment Queues + BOW
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.571019 | 0.5799457 |
500 | 0.591865 | 0.5900151 |
1000 | 0.596343 | 0.6184012 |
2000 | 0.613480 | 0.5988024 |
3000 | 0.625344 | 0.6133333 |
5000 | 0.6 | 0.6332842 |
10000 | 0.613333 | 0.6117647 |
12000 | 0.625165 | 0.6244477 |
15000 | 0.6276041 | 0.6311688 |
Macro f-score analysis
General sentiment features (MPQA)
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.59303 | 0.57154 |
500 | 0.54834 | 0.65155 |
1000 | 0.55208 | 0.64063 |
2000 | 0.54880 | 0.64961 |
3000 | 0.54212 | 0.66472 |
5000 | 0.53115 | 0.65877 |
10000 | 0.64392 | 0.66429 |
12000 | 0.64031 | 0.65162 |
15000 | 0.63760 | 0.63893 |
CoreNLP Sentiment features
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.60311 | 0.60323 |
500 | 0.62327 | 0.64561 |
1000 | 0.63108 | 0.66942 |
2000 | 0.66101 | 0.65051 |
3000 | 0.65690 | 0.66053 |
5000 | 0.66525 | 0.67660 |
10000 | 0.66053 | 0.65723 |
12000 | 0.66185 | 0.66431 |
15000 | 0.67069 | 0.66263 |
Twitter Sentiment Features
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.61387 | 0.58628 |
500 | 0.62576 | 0.64608 |
1000 | 0.63073 | 0.66455 |
2000 | 0.63968 | 0.67255 |
3000 | 0.65115 | 0.67281 |
5000 | 0.64418 | 0.67874 |
10000 | 0.64069 | 0.65582 |
12000 | 0.63854 | 0.66880 |
15000 | 0.63505 | 0.63764 |
Bow alone
Feature Count | Mutual Information | Chi-squared |
---|---|---|
100 | 0.56596 | 0.57807 |
500 | 0.56778 | 0.56950 |
1000 | 0.64222 | 0.64496 |
2000 | 0.63910 | 0.64584 |
3000 | 0.64164 | 0.63732 |
5000 | 0.64843 | 0.65658 |
10000 | 0.62372 | 0.65714 |
12000 | 0.61729 | 0.62755 |
15000 | 0.61443 | 0.61324 |
Precision and Recall for top performers (macro f-score)
MI features
Data Source | N-features | Negative Precision | Negative Recall | Positive Precision | Positive Recall |
---|---|---|---|---|---|
BOW only | 5000 | 0.75062 | 0.63636 | 0.550914 | 0.678457 |
Generic Sentiment Features + BOW | 10000 | 0.79394 | 0.553911 | 0.53524 | 0.78135 |
Syntactic Sentiment Features + BoW | 5000 | 0.75238 | 0.66808 | 0.56868 | 0.66559 |
Twitter Sentiment Featuers + BoW | 5000 | 0.77311 | 0.58351 | 0.538642 | 0.73955 |
Chi squared features
Data Source | N-features | Negative Precision | Negative Recall | Positive Precision | Positive Recall |
---|---|---|---|---|---|
BOW only | 5000 | 0.76071 | 0.638478 | 0.55814 | 0.69453 |
Generic Sentiment Features + BOW | 10000 | 0.76098 | 0.65962 | 0.56952 | 0.68489 |
Syntactic Sentiment Features + BoW | 5000 | 0.76923 | 0.676533 | 0.58424 | 0.69132 |
Twitter Sentiment Featuers + BoW | 5000 | 0.76905 | 0.68288 | 0.58791 | 0.6881 |