
Laptop ram upgrade
nvidia apex
CFG.jl
ROCm pytorch
Linpack results

Benchmarks

unigine heaven: - 9.4 fps - 236 score - min 5.4 - max 21.2 - 1920 x 1080
universe sandbox 37

unigine heaven
11.1 fps
281 score
min 7.0
max 25.2
1920 x 1080

universe sandbox 39

Laptop ram upgrade

before upgrade:

after upgrade

Scarecrow 1123 wrote a trainer for allennlp that uses nvidia's apex package to enable mixed
precision training.

The full gist is available here.

This is a copy of the trainer provided..

I find that my models are more often successful if I specify "O1" instead of "O2" for amp. This uses
only a set of whitelisted operations in half precision mode.

This trainer has the change already made.

To use this during training include a snippet like this in your training json config.

and make sure the trainer is in a directory that you are including using --include-package .

For a bert model I was training, it ran out of VRAM on a single GTX 1070 without apex configured.
However with apex configured the model was only using 4.5GB. There was no discernable penalty
with regard to the number of epochs required though I haven't investigated a ton.

nvidia apex

{

 //

 "trainer": {

 "type": "fp16-trainer",

 "mixed_precision": true,

 // other options

 }

 //

}

https://gist.github.com/scarecrow1123/4017885b17598c490540c2259b9298aa#file-fp16_trainer-py
https://wiki.ksteimel.duckdns.org/attachments/19
https://wiki.ksteimel.duckdns.org/attachments/20

grammar size: rules: 52 lexicon: 66

parsing execution times on a single thread

size time

300
sents

1.172
seconds

3,000
sents

2.988
seconds

30,000
sents

22.06
seconds

300,000
sents

208.03
seconds

parsing execution times on two threads

size time

300
sents

1.000
seconds

3,000
sents

2.216
seconds

30,000
sents

13.874
seconds

300,000
sents

127.376
seconds

CFG.jl

Used this tutorial to install pytorch for rocm, however I checked out release 1.5.
https://github.com/ROCmSoftwarePlatform/pytorch/wiki/Building-PyTorch-for-ROCm Allennlp was
version 0.9.

This used bert-base with a batch size of 8.

The vega frontier edition results were obtained from a rented gpueater instance.

A batch size of 16 was also tried for the vega frontier edition to see if it would fit in vram and
strangely the time per epoch dropped (01:12) with the larger batch size). This was also with
thermal throttling as the vega fe was hitting 87 C and the clocks were down to 1.2 Ghz from 1.6
Ghz. The fans were limited to 40% under load on gpueater.com. It would be interesting to see
what the performance is like with better thermals.

GPU

BERT-
base

emotion
regression

GRU
pos-

tagger
(1-
hid)

GRU
pos-

tagger
(2-
hid)

ROCm pytorch

GRU

BERT

Vega FE notes

GTX
10701:26.960:04.20:04.3

Tesla
M401:32.760:04.050:04.3

RTX
30900:26.20:02.00:02.6

RX5802:14.40:06.90:08.5

Vega
Frontier1:29.30:04.40:05.1

Vega
Frontier
(90%
fans)

1:09.10:02.30:03.0

Vega
frontier
(rocm
4.0)

1:07.50:02.40:02.9

i7-
7800xx 00:1800:23

i9-
7900x
(defective?)

x 00:1900:23

i9-
7900xx 00:1600:20

i9-
7980xex 00:1500:18

e5-
2680v3x 00:2700:34

using rocm apex gave no discernable performance improvement (with use_apex = true) However,
it did reduce memory consumption by ~1GB for a batch of 16.

The RTX 3090 was tested with cuda 11, all other nvidia gpus were using cuda 10.2 (the RTX 3090
is not supported in this earlier version of cuda).

ProcessorProblem
size

Ram
size

Ram
speedGFLOPSNotes

e5-
26904000048

GB

1333
Mhz
x4

152.1

No
avx2
on
this
cpu

e5-
2680
v3

3000016
GB

2133
Mhz.
x4

373.2

limited
by
memory
size.
Not
the
peak
performance

7800x3500032
GB

3200
Mhz
x4.

535.0

4.1
Ghz
avx-
512
clock

7900x4000032
GB

2933
x2570.5No

overclock

7900x4000032
GB

3200
x4.660.7No

overclock

7980xe45000128
GB

3200
Mhz
x4

975.2
Rented
from
vast.ai

Linpack results

